Widener University Information

UNIVERSITY POLICY

It is the policy of Widener University not to discriminate on the basis of sex, gender, pregnancy status, age, race, national origin or ethnicity, religion, disability, status as a veteran of the Vietnam era or other covered veteran, sexual orientation, gender identity, marital status, or genetic information in its educational programs, admissions policies, employment practices, financial aid, or other school-administered programs or activities. This policy is enforced under various federal and state laws, including Title VII of the Civil Rights Act of 1964 as amended by the Civil Rights Act of 1991, Title IX of the Education Amendments of 1972, Section 504 of the Rehabilitation Act of 1973, the Age Discrimination in Employment Act, and the Americans with Disabilities Act. Further, in compliance with state and federal laws, Widener University will provide the following information upon request: (a) copies of documents pertinent to the university’s accreditations, approvals, or licensing by external agencies or governmental bodies; (b) reports on crime statistics and information on safety policies and procedures; and (c) information regarding gender equity relative to intercollegiate athletic programs—Contact: Senior Vice President for Administration and Finance, Widener University, One University Place, Chester, PA 19013; tel. 610-499-4151. Comments or requests for information regarding services and resources for disabled students should be directed to: Director of Disability Services, Widener University, One University Place, Chester, PA 19013; tel. 610-499-1266; or Dean of Students, Widener University Delaware Law School, P.O. Box 7474, Wilmington, DE 19803; tel. 302-477-2173.

Title IX of the Education Amendments of 1972 ("Title IX") prohibits discrimination based on sex in gender in educational programs and activities that receive federal financial assistance. Such programs include recruitment, admissions, financial aid and scholarships, athletics, course offerings and access, hiring and retention, and benefits and leave. Title IX also protects students and employees from unlawful sexual harassment (including sexual violence) in university programs and activities. In compliance with Title IX, the university prohibits discrimination and harassment based on sex in employment as well as in all programs and activities.

The university’s Title IX coordinator monitors compliance with Title IX and its accompanying regulations. Individuals with questions or concerns about Title IX and/or those who wish to file a complaint of non-compliance may contact the Title IX coordinator or deputy coordinators: The university's Title IX coordinator is Director of Employee Relations Alison Kiss Dougherty, One University Place, Chester, PA 19013; tel. 610-499-1301; e-mail akdougherty@widener.edu. The university has also appointed several deputy Title IX coordinators: For students on the Chester, PA, campus and Extended Learning students: Assistant Dean for Student Development and Engagement Catherine Feninella, One University Place, Chester, PA 19013; tel. 610-499-4392; e-mail cafeminella@widener.edu; or Chief of Campus Safety Kevin Raport, tel. 302-477-2202; e-mail kjraport@widener.edu. For students and employees on the Wilmington, DE, campus: Dean of Students Susan Goldberg, Widener University Delaware Law School, 4601 Concord Pike, Wilmington, DE 19803; tel. 302-477-2173; e-mail sgoldberg@widener.edu. For students and employees on the Harrisburg, PA, campus: Supervising Attorney and Director, of Student Organizations Mary Catherine Scott, Widener University Commonwealth Law School, 3800 Vartan Way, Harrisburg, PA 17106; tel. 717-541-0320; e-mail mcscott9055@widener.edu.

The U.S. Department of Education’s Office for Civil Rights (OCR) is the division of the federal government charged with enforcing compliance with Title IX. Information regarding OCR can be found at: www.ed.gov/about/offices/list/ocr/index.html. Questions about Title IX may be directed to OCR as well as to the university’s Title IX coordinator or deputy coordinators.

This publication contains information, policies, procedures, regulations, and requirements that were correct at the time of publication. In keeping with the educational mission of the university, the information, policies, procedures, regulations, and requirements contained herein are continually being reviewed, changed, and updated. Consequently, this document cannot be considered binding and must be used solely as an informational guide. Students are responsible for keeping informed of official policies and meeting all relevant requirements.

The university reserves the right and authority at any time to alter any or all of the statements contained herein, to modify the requirements for admission and graduation, to change or discontinue programs of study, to amend any regulation or policy affecting the student body, to increase tuition and fees, to deny admission, to revoke an offer of admission, and to dismiss from the university any student at any time, if it is deemed by the university to be in the best interest of the university, the university community, or the student to do so. The provisions of this publication are subject to change without notice, and nothing in this publication may be considered as setting forth terms of a contract between a student or a prospective student and Widener University.

ACCRREDITATIONS & MEMBERSHIPS

Widener University is a member of the Association for Continuing Higher Education and is accredited by the Middle States Commission on Higher Education.

Widener University’s graduate programs are additionally accredited by the following: AASCB International—The Association to Advance Collegiate Schools of Business (School of Business Administration), American Association for Sexuality Educators, Counselors, and Therapists (Center for Human Sexuality Studies), American Bar Association (School of Law), American Psychological Association (Doctor of Psychology; Clinical Psychology Internship), Commission on Accreditation for Healthcare Management Education (MBA in Healthcare Management), Commission on Accreditation in Physical Therapy Education (Doctor of Physical Therapy), Commission on Collegiate Nursing Education (School of Nursing), Commission on Continuing Legal Education of the Supreme Court of Delaware (Delaware Law School), Council on Social Work Education (School of Social Work Education), National Association for Education of Young Children (Child Development Center), National Council for the Accreditation of Teacher Educators (Center for Education), Pennsylvania State Board of Nursing (School of Nursing), Pennsylvania Continuing Legal Education Board of the Supreme Court (Commonwealth Law School), Pennsylvania Department of Education (Center for Education), Pennsylvania Department of Welfare (Child Development Center), Pennsylvania Private School Board (Center for Education).

Widener University’s graduate programs hold membership in the following: Academic Council of the American Physical Therapy Association (Institute for Physical Therapy Education), American Society for Engineering Education (School of Engineering), Association of Engineering Colleges of Pennsylvania (School of Engineering), Association of American Law Schools (Delaware Law School and Commonwealth Law School), Greater Philadelphia Engineering Deans Economic Development Council (School of Engineering), Engineering Deans Institute (School of Engineering), Engineering Research Council of the American Association of Engineering Societies (School of Engineering), Engineering Workforce Commission (School of Engineering), National Association of Schools of Public Affairs and Administration (Master of Public Administration), National Association of State Boards of Accountancy (Delaware Law School and Commonwealth Law School), National Council for Schools and Programs of Professional Psychology (Institute for Graduate Clinical Psychology), National League for Nursing and the American Association of Colleges of Nursing (School of Nursing).
GENERAL INFORMATION

ENGINEERING GRADUATE PROGRAMS
Master of Science in Engineering (MSE)†
 Biomedical Engineering
 Chemical Engineering
 Civil Engineering
 Electrical Engineering
 Engineering Management
 Mechanical Engineering
Master of Science in Engineering/
 Master of Business Administration*
†Dual specialization available
*Dual degree with School of Business Administration

MISSION
Widener University’s School of Engineering is dedicated to providing quality undergraduate and graduate education and to advancing the state of knowledge in engineering, with the aim of preparing graduates for successful professional careers.

EDUCATIONAL OBJECTIVES
The educational objectives of the various graduate programs are that its graduates will excel in industry, government, and academia, and will demonstrate a commitment to lifelong learning and professional development. By the time of graduation, students are expected to achieve the following educational outcomes:

- demonstrate in-depth knowledge and competence in the field of study.
- develop advanced skills in acquiring, evaluating, and integrating new knowledge.
- demonstrate ability to communicate effectively.
- demonstrate ongoing understanding of professional responsibility.

Each program offers a core of courses that emphasizes fundamentals, and a set of electives that adds specialization and practical application. It is the intent of these programs that all graduates be well equipped as engineering specialists or as professionally skilled program managers.

The dual MSE/MBA program is offered in conjunction with each of the engineering programs except engineering management. The student should consult the curricula in the respective major area to complete the dual program course sequence.

The School of Engineering reserves the right to cancel the offering of any course if the enrollment is below minimum levels.

SESQUICENTENNIAL ANNIVERSARY
In 2012, the School of Engineering celebrated its 150-year anniversary of providing quality engineering education at Widener University. The first class of three engineers began their studies in the fall of 1862 and graduated from the Pennsylvania Military Academy (Widener’s predecessor institution) with the degree of bachelor of civil engineering in 1867. To date, thousands of students have completed their bachelor’s and master’s degrees in a variety of engineering disciplines. They have gone on to practice engineering in every corner of the nation and around the globe.

ADMISSION REQUIREMENTS
All inquiries and subsequent submission of admission forms for graduate engineering certificate programs, master of science in engineering (MSE) programs, and the dual degree (MSE/MBA) program should be addressed to:

Office of Graduate Enrollment Management
Widener University
One University Place
Chester, PA 19013-5792

MASTER OF SCIENCE IN ENGINEERING PROGRAMS—
A graduate candidate should hold a bachelor of science degree in engineering. Candidates who hold undergraduate degrees in related areas are also considered.

Admission into a graduate program as a full-time student is predicated on a cumulative grade point average (GPA) of at least 2.8 (based on a 4.0 system) from an undergraduate program and scores from the Graduate Record Examination (GRE). The GRE requirement may be waived for applicants with a cumulative GPA of 3.0 and above from an EAC/ABET accredited undergraduate program.

Admission into a graduate program as a part-time student is predicated on a cumulative GPA of at least 2.8 (based on a 4.0 system) from an EAC/ABET-accredited program and relevant professional experience. Although the GRE is optional for part-time students, it may be helpful in the evaluation of credentials.

CERTIFICATE PROGRAMS—Applicants should hold a bachelor’s degree in engineering, engineering technology, science, business, or related field (depending on certificate) with a minimum GPA of 2.5 in their undergraduate program or PE certification.

RECOMMENDATION LETTERS—Prospective students applying for admission into the graduate program must provide two letters of recommendation at the time of application submission.

CONDITIONAL ADMISSION—Students who graduate from unaccredited programs or whose academic record falls short of established standards but whose progress since graduation has demonstrated notable achievement may be admitted with condition. To satisfy particular deficiencies, the student may be required to take certain undergraduate courses and/or graduate courses and receive a grade of B or better in each of these courses. Conditional courses will be specified in the acceptance letter from the School of Engineering’s Office of Graduate Programs.

INTERNATIONAL STUDENTS—International students should consult the International Student Services web page at www.widener.edu for international graduate student guidelines or contact the Office of International Student Services at Widener University, One University Place, Chester, PA 19013; phone: 610-499-4499.

International students are required to complete one semester of study in the school and degree into which they are matriculated before they can be admitted to a different school or degree program in the university. During the initial semester, international students may apply for admission to a different school or degree, seeking admission for the subsequent semester.

SPECIAL STUDENTS—Students who are not formal degree candidates are considered special or nonmatriculated students. They must complete all course work assigned to degree candidates and receive a grade. A special student may request a change in status to degree candidate. The request must be submitted in writing to the Office of Graduate Programs, School of Engineering. An approval will specify the courses accepted for the degree program and the time limit. A maximum of 9 credits...
Graduate courses that are required for the master’s degree program obtained. The GPA is the total grade points divided by the number of semester hours undertaken, and is based upon the graduate courses that are required for the master’s degree programs as shown in the curricula, which follows.

AUDITING—Students will be permitted to audit courses in the graduate program with the approval of the instructor. No grade or credit is given for auditing a course and examinations need not be taken; however, the registration procedure and fee structure are the same as that for other students.

TRANSFER OF CREDIT—A maximum of nine credits in total from all sources may be transferred.

Transfer of Credit for Graduate-Level Courses: Transfer credit for previous graduate courses that have not been used to satisfy the requirements of another degree may be accepted toward degree requirements. Transfer credit is granted only at the time the student is admitted to the program. The subjects must form an integral part of the proposed program as approved by the student’s advisor and have been taken within five years prior to matriculation. A grade of B or better must have been earned in these transfer courses. No more than three credits will be accepted for transfer after matriculation. Students must obtain written permission from their advisor/department chairman and the graduate program director prior to taking a course at another institution and must earn a grade B or better.

Transfer of Credit for Half-Course Modules and Professional Short Courses: Transfer credit for half-course modules or professional short courses will be considered on a case-by-case basis, according to the above guidelines. Transfer credit for professional short courses may be considered only upon evaluation of a student course portfolio for each course. The student course portfolio must include the course syllabus, course notes, completed homework assignments, and either examinations or one or more graded course project reports. Team project work must be designated as such. Portfolios will be evaluated by at least two faculty members from the department involved. One and one-half semester hours of transfer credit may be awarded for a professional short course of a minimum of 22.5 contact hours, including 1.5 hours of examination/evaluation time.

GRADUATE MANAGEMENT ADMISSION TEST—The Graduate Management Admission Test (GMAT) is required for the dual MSE/MBA program.

ACADEMIC CALENDAR

At the start of each semester, students should check Campus-Cruiser for academic calendar and deadline information.

GRADING

The following grades and their associated grade points are used:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.0</td>
</tr>
<tr>
<td>A−</td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
</tr>
<tr>
<td>B−</td>
<td>2.7</td>
</tr>
<tr>
<td>C+</td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td>2.0</td>
</tr>
<tr>
<td>C−</td>
<td>1.7</td>
</tr>
</tbody>
</table>

*Only for courses offered on a pass/fail basis.

NOTE: Individual instructors may elect, at their discretion, not to use plus/minus grades.

The grade point value for a given course is the product of the semester hours for the course and the numerical value of the grade obtained. The GPA is the total grade points divided by the number of semester hours undertaken, and is based upon the graduate courses that are required for the master’s degree programs as shown in the curricula, which follows.

The grade of I is given when a student has not completed course requirements because of excusable reasons. A student who receives a grade of I must arrange to make up all deficiencies with the instructor issuing the grade. If the work is not made up within one calendar year from the end of the semester in which the incomplete is received, the grade will be automatically converted to F, unless the course in question is a thesis research course or a dissertation research course. Upon completion of the requirements, the instructor will institute a change of grade. (Note: A student does not register again for a course in which the grade of incomplete has been received.) A student cannot be awarded a grade when there is an outstanding incomplete grade on the transcript, even if the incomplete is in a course not required in the degree program.

SATISFACTORY ACADEMIC PROGRESS—Master’s candidates are required to maintain at least a B average. Courses for which grades lower than B− are received may be repeated only with the permission of the graduate committee. The new grade replaces the old for computation of the GPA, but both grades are recorded on the transcript. No more than two repetitions total and only one repetition per course are allowed.

A student whose academic performance is considered inadequate will be subject to dismissal from the program. Conduct inconsistent with the ethical and professional standards of the discipline, whether it occurs before or after matriculation, is also grounds for dismissal from the program. Such conduct includes academic fraud, which consists of any actions that serve to undermine the integrity of the academic process, including cheating, post-test alteration of answers, plagiarism, and electronic or computer fraud. A student dismissed for academic fraud may no longer enroll in the graduate programs of the university and may not apply for admission into another division of the university. Please see the section titled “Standards for Academic Integrity.”

COURSE OFFERINGS

Graduate course offerings are published each semester by the Office of Graduate Programs.

DROP/ADD POLICY—Students taking a course in the School of Engineering may withdraw from the course at any time prior to the final examination and receive the grade of W. If a course does not include a final examination, the deadline for withdrawing from the course with a grade of W is the final class meeting for the course. Graduate students begin the withdrawal process by notifying their instructor and advisor in writing of their intent to withdraw. Students must submit a drop/add form to the Registrar’s Office and the Office of Graduate Programs.

Students may add a course without special permission no later than one week after the semester has begun. If a student wishes to add a course after one week, written permission must be obtained from both the instructor and the appropriate department head.

LEAVE OF ABSENCE

Students who have not completed their programs of study and desire a leave of absence must apply to the Office of Graduate Programs specifying the duration of the requested leave. Such leave will normally be granted. A student who does not apply for a leave of absence and does not register for at least one course in a semester will be considered as withdrawn from the program. International students must contact the Office of International Student Services before pursuing a leave of absence.
REINSTATEMENT TO THE PROGRAM
Students who have withdrawn from the program may petition for readmission by filing a new application. Such requests must be sent to the Office of Graduate Programs no later than 30 days prior to the start of the semester in which the student expects to enroll.

REGISTRATION
Currently enrolled students may preregister for courses for the following semester during the preregistration period. Newly admitted students must register in accordance with the schedule published in the academic calendar. There is a late registration fee for failure to adhere to this schedule.

STUDENT STATUS
Students pursuing a program of studies in Widener’s School of Engineering are considered to be full-time graduate students when they are enrolled in 9 or more credits of graduate study or in ENGR 691, 692, or 693 (thesis). It is recommended that students take no more than 12 credits of graduate study per semester. Students who enroll in at least 5 credits of graduate study are considered to be half-time students.

TIME LIMIT
All requirements for the master of science in engineering degree must be completed within seven years from the beginning of the first semester or within two years from the start of Thesis I (ENGR 691), whichever comes first. See “Thesis Regulations” and “Thesis Continuation” below. Students enrolled in the dual MSE/MBA program must complete all requirements within nine years.

THESIS REQUIREMENT
Students holding assistantships or fellowships may be required to submit a thesis, which carries six semester hours of credit. The thesis is optional for all other students. Those who do not elect to write a thesis must substitute nine semester hours of course work, appropriate in each case to the student’s major.

THESIS REGULATIONS—The thesis (and the research upon which the thesis is based) represents six semester hours of credit. Instructions for thesis preparation, format, and scheduling may be obtained from the graduate program office. A thesis proposal is to be submitted to the advisor and to the director for graduate programs for approval prior to the student’s enrollment in ENGR 691 (Thesis I). Upon successful completion of ENGR 691, students must enroll in the immediately following semester in ENGR 692 (Thesis II). The student must complete the thesis within a two-year period from the start of Thesis I. An oral defense of the thesis must be presented at a faculty seminar prior to final acceptance. The final document must be completed within six months after the oral defense.

THESIS CONTINUATION—Students who have not completed their thesis after enrolling for two consecutive semesters must then register for ENGR 693, Thesis Continuation, for which no graduation credit is given. Students must register for ENGR 693 in all subsequent semesters until the thesis is completed. Under unusual circumstances, the student may be granted an extension to complete the thesis beyond the two-year limit, in which case the student must register for ENGR 693 every semester until the thesis is completed.

ORAL PRESENTATIONS—Requests to schedule oral thesis presentations must be submitted to the student’s advisor in writing. No oral thesis presentations will be permitted in the period 30 days prior to the scheduled graduation date. For additional information, contact the Office of Graduate Programs.

GRADUATE COOPERATIVE EDUCATION
Widener University’s School of Engineering offers an optional graduate-level cooperative educational experience to qualified students. The program is intended to supplement students’ graduate studies while preparing them for employment in the professional sector. The minimum grade point average to qualify for the program is 3.0. Students must maintain a 3.0 or higher grade point average for the duration of the cooperative education experience. International students may participate in the graduate co-op program after their first year of full-time studies and after attending an orientation session. For information, visit www.widener.edu and access the School of Engineering’s Graduate Cooperative Education web page.

STANDARDS FOR ACADEMIC INTEGRITY

ACADEMIC INTEGRITY POLICY
The Academic Integrity Policy was approved by the Faculty Council. Additional regulations are excerpted and paraphrased from the “Minutes of the Academic Council.” These regulations explain Widener University’s expectations regarding students’ academic conduct and describe procedures related to those expectations. Exceptions to the regulations may be made only by special action of the school/college academic councils of the Academic Review Board. References in this catalog refer to the Main Campus only.

STATEMENT ON ACADEMIC INTEGRITY
Widener University strongly supports the concept of academic integrity and expects students and all other members of the Widener University community to be honest in all academic endeavors. Cheating, plagiarism, and all other forms of academic fraud are unacceptable; they are serious violations of university policy. In some circumstances, students’ conduct may require review under the research integrity policy, the freedom to learn policy, the judicial review policy, and other university policies. Widener University expects all students to be familiar with university policies on academic integrity, as outlined in this catalog. The university will not accept a claim of ignorance—either of the policy itself or of what constitutes academic fraud—as a valid defense against such a charge.

VIOLATIONS OF ACADEMIC INTEGRITY
Violations of academic integrity constitute academic fraud. Academic fraud consists of any action that serves to undermine the integrity of the academic process or that gives the student an unfair advantage, including:

- inspecting, duplicating or distributing test materials without authorization.
- cheating, attempting to cheat, or assisting others to cheat.
- altering work after it has been submitted for a grade.
- plagiarizing.
- using or attempting to use anything that constitutes unauthorized assistance.
- fabricating, falsifying, distorting, or inventing any information, documentation, or citation.

Each student’s program may have on record additional specific acts particular to a discipline that constitutes academic fraud. These specific acts are specified in relevant handbooks or course syllabi.

STATEMENT ON PLAGIARISM
One of the most common violations of academic integrity is plagiarism. Plagiarism can be intentional or unintentional. However, since each student is responsible for knowing what constitutes plagiarism, unintentional plagiarism is as unacceptable as intentional
plagiarism and commission of it will bring the same penalties. In many classes, faculty members will provide their definitions of plagiarism. In classes where a definition is not provided, students will be held to the definition of plagiarism that follows:

Definition of Plagiarism

Plagiarism—submitting the work of others as one’s own—is a serious offense. In the academic world, plagiarism is theft. Information from sources—whether quoted, paraphrased, or summarized—must be given credit through specific citations. When a student paraphrases a work, it is still necessary to cite the original source. Merely rearranging a sentence or changing a few words is not sufficient. The citation style should be appropriate for the discipline and should clearly indicate the beginning and ending of the referenced material. All sources used in the preparation of an academic paper must also be listed with full bibliographic details at the end of the paper, as appropriate in the discipline.

FACULTY AND STUDENT RESPONSIBILITIES

- Every student, faculty member, and administrator is responsible for upholding the highest standards of academic integrity. Each member of the Widener community shall honor the spirit of this policy by refusing to tolerate academic fraud.
- When expectations for a course are not addressed in this policy, it is the responsibility of the instructor to provide students with additional guidelines for what constitutes “authorized” and “unauthorized” assistance.
- It is the responsibility of every student to seek clarification if in doubt about what constitutes “authorized” and “unauthorized” assistance. In cases of collaborative work, all students within the collaborative group may be responsible for “unauthorized” assistance to any individual student within the collaborative group.
- Students are required to obtain permission prior to submitting work, any part of which was previously or will be submitted in another course. The instructor has the option of accepting, rejecting, or requiring modification of the content of previously or simultaneously submitted work.

A student who suspects that a violation of academic integrity has occurred should report that violation to the associate provost or a faculty member. In this report, the student should describe any action taken, such as talking with the person involved or with a faculty or staff member. Every effort will be made to preserve the anonymity of the student reporting the incident; however, confidentiality cannot be guaranteed.

RESOLUTION AT THE FACULTY/STUDENT LEVEL FOR ACADEMIC FRAUD OCCURRING IN A COURSE

Process and Reporting

A faculty member who becomes aware of possible academic fraud in a course will:

1. Collect and preserve all evidence of the suspected fraud.
2. Inform the suspected student(s) in writing. The faculty member may contact the associate provost for additional support and guidance.
3. Provide the student with the opportunity to respond to the charges within five business days of his/her receipt of, or refusal to accept, notice of the suspected fraud. If the student fails to respond to this opportunity, the student forfeits any right to appeal the decision to the school or college level where the course is taught, and the faculty member will determine the penalty.
4. Discuss the academic fraud with the student and agree to pursue student/faculty resolution. If no such agreement is reached, the faculty member refers the matter to the dean of the school or college level where the course is taught and will be processed at the school/college level.
5. In cases where a faculty member takes action for a case of academic fraud, the faculty member will send a report describing the academic fraud and the penalty being imposed to the student, the dean of the school or college where the course involved is taught, the dean of the school or college where the student is enrolled, and the Office of the Associate Provost for Graduate Studies and Extended Learning as the office of record. Please contact the associate provost for guidelines and templates for constructing the reports.

If the faculty member is not satisfied with the sanctions available, he or she may refer the case to the dean responsible for the course in question.

If the student does not accept responsibility for the academic fraud or disagrees with the sanction imposed by the faculty member, the student may appeal the outcome at the school or college level according to the process stipulated in the bylaws or student handbook of the school or college where the course is taught.

Penalties

The suggested penalty for academic fraud in any course is failure in the course. However, faculty members may take alternative steps. Penalties available to faculty members include:

- Formal warning.
- Reduction in grade for the assignment.
- Reduction in the grade for the course.
- Failing grade for the assignment.
- A failing grade (F) in the course.
- A failing grade (XF) in the course (a grade of XF will appear on the transcript and be defined on the transcript as failure as a result of academic fraud).

Offenses Subject to Expulsion

All reports of academic fraud will be reviewed by the associate provost to verify whether reports have been received indicating that the student has been found responsible for any other act of academic fraud. In cases where the associate provost finds that the case is a repeat offense for which the student has received a failing grade (F or XF) in a course for each offense or a case in which a student has stolen or attempted to steal an examination, the associate provost will expel the student from the university.

The student may appeal cases resulting in expulsion to the Academic Review Board.

RESOLUTION AT THE SCHOOL/COLLEGE LEVEL

Process and Reporting

When a faculty member or any other employee of the university becomes aware of possible academic fraud occurring outside a course, the faculty member or employee will:

1. Collect and preserve all evidence of the suspected fraud.
2. Refer the matter to the dean of the school or college where the student is enrolled.

When a case of academic fraud occurring in a course is referred to the dean of the school or college where the course is taught or when a case of academic fraud occurring outside a course is referred to the dean of the school or college where the student is enrolled:

1. The dean will notify the student and the associate provost in writing of the charge of academic fraud, the penalty to be imposed, and all rights of appeal, if any.
2. If a student wishes to contest the charge of academic fraud or disagrees with the sanction imposed, the student may do so according to the process stipulated in the bylaws of the student handbook of the school or college where the course is taught. In such a case, the student will also be informed of the process as stipulated by the school or college.
3. In cases where the penalty results in dismissal of the student from the school or college, the student may appeal the decision at the university level in writing to the Academic Review Board via the associate provost.
Penalties
The maximum penalty imposed in school or college resolution for individuals convicted of academic fraud shall be dismissal from the school or college. Lesser penalties may include:

- Formal warning.
- Reduction in grade for the assignment.
- Reduction in the grade for the course.
- Failing grade for the assignment.
- Failing grade (F) in the course.
- A failing grade (XF) in the course (a grade of XF will appear on the transcript and be defined on the transcript as failure as a result of academic fraud).
- Required attendance at an academic integrity workshop or tutorial.

Offenses Subject to Expulsion
All reports of academic fraud will be reviewed by the associate provost to verify whether reports have been received indicating that the student has been found responsible for any other act of academic fraud. In cases where the associate provost finds that the case is a repeat offense where the student has received a failing grade (F or XF) in a course for each offense or a case where a student has stolen or attempted to steal an examination, the associate provost will expel the student from the university. The student may appeal cases resulting in expulsion to the Academic Review Board.

RESOLUTION AT THE UNIVERSITY LEVEL—REPEAT OFFENSES / THEFT OF EXAMINATION MATERIALS

Process
The associate provost will review all reports of academic fraud.

1. If the associate provost finds the case is a repeat offense where the student has received a failing grade (F or XF) in a course for each offense, the associate provost will expel the student from the university. The student may appeal the case to the Academic Review Board.

2. If the associate provost finds the case is a repeat offense where the student has not received a failing grade for both offenses, the case will be referred to the Academic Review Board.

3. If the student has stolen or attempted to steal an examination, the associate provost will expel the student from the university. The student may appeal the case to the Academic Review Board.

Penalties
The maximum penalty imposed by the Academic Review Board for individuals convicted of academic fraud shall be expulsion from the university. Penalties include:

- An XF grade in the course (a grade of XF will appear on the transcript and be defined on the transcript as failure as a result of academic fraud).
- Removal of the privilege of representing the university in extracurricular activities, including athletics, as well as the privilege of running for or holding office in any student organization that is allowed to use university facilities or receives university funds.
- Suspension from the university for up to one academic year. Students suspended for academic fraud cannot transfer into Widener any credits earned during the suspension.
- Dismissal from the university. Students dismissed for academic fraud must apply for readmission according to the Academic Review Board guidelines. Readmission applications by students suspended for academic fraud must be approved by the Academic Review Board.
- Expulsion from the university without the opportunity for readmission.

Reporting
The associate provost will send a report describing the academic fraud and the penalty being imposed to the student, the affected faculty members, the dean of the school or college where the course involved is taught, and the dean of the school or college where the student is enrolled, as well as maintain a copy as the office of record.

STUDENT APPEALS/DECISIONS—EXPULSION/DISMISSAL
When a student is expelled or dismissed by the associate provost, the student may initiate his or her appeal to the Academic Review Board by notifying the associate provost in writing of the request for an appeal, together with a concise statement of the grounds for the appeal.

Written notice of the student’s request for appeal, together with the concise statement of the student’s grounds for the appeal, must be received by the associate provost no more than ten business days following the decision of the faculty, school/college, or university.

When a case is referred to the Academic Review Board, the associate provost shall notify the student in writing of the time and location for the Academic Review Board hearing.

The membership of the Academic Review Board consists of the provost, the associate provost, the dean, the chair of the faculty, and the chair of the Faculty Council Academic Affairs Committee; provided, however, that any majority of the foregoing members shall constitute a quorum for purposes of conducting any matters to come before the Academic Review Board pursuant to these standards. Any faculty member on the Academic Review Board involved in the original accusations will not participate in deliberations in that case.

At an appeal before the Academic Review Board, the student shall have the opportunity to be heard and the right to produce witnesses or introduce evidence subject to the reasonable discretion of the Academic Review Board. The student may also be accompanied by a representative of his or her choosing who may not participate in the appeal. The Academic Review Board shall not be subject to any evidentiary rules but shall accept or reject evidence in its sound discretion. All appeals shall be closed to the public and no stenographic record shall be required unless requested at the expense of the requesting party. In the absence of a stenographic record, the Academic Review Board shall provide, in its sole discretion, either a recorded record or notes of the proceedings taken by a member of the Academic Review Board.

The results of all appeals to the Academic Review Board, permitted in the Academic Integrity Policy, shall be final.

Any matter submitted to a faculty member, the school/college, or the university for decision or review under this policy will be decided in a timely manner and the parties will use their best efforts to conclude the proceedings within the semester in which the alleged offense has occurred or the appeal is received, provided, however, that any delay in the proceedings will in no way operate as a waiver of the university’s right to assess any or all of the sanctions permitted hereunder. References to the associate provost also includes his/her designee, except with respect to membership on the Academic Review Board.

ACADEMIC REVIEW BOARD
The Academic Review Board consists of the provost, the associate provost, the deans of each school/college, the vice chair of the University Council, and the chair of the University Council Academic Affairs Committee. Duties of the board include (1) hearing petitions for the waiver of academic regulations that transcend a single school or college (e.g., distribution or residency requirements, walk-through policy), and (2) serving as the appeal body in cases of an alleged violation of procedure in school/college Academic Council hearings.
ACADEMIC GRIEVANCE
APPEAL PROCEDURE
If a student has a grievance concerning a class in which he or she is enrolled, he/she will first try to resolve the problem with the instructor of the class. If a student has a grievance concerning an academic requirement of the program (e.g., comprehensive examination, final clinical oral examination, clinical placements), he/she will first try to resolve the problem with the director of the program. If it is impossible to resolve the matter at this initial level, the grievance must be placed in writing. Then the student may appeal to the next higher level. The student should inquire in the office of the dean responsible for the course or program in question for the proper appeal procedure if the student’s grievance is not resolved to the student’s satisfaction after initial appeal to the instructor or the program director.

GRADUATION REQUIREMENTS
AND AWARDING OF DEGREES
Students are responsible for knowing and meeting curriculum requirements as shown in this bulletin. The master of science in engineering programs require a minimum of 30 credits. The dual MSE/MBA program’s credit requirements vary according to the undergraduate business courses completed. A savings of two to four courses results from the combining of the two degree programs. Please note that a waiver of any requirement for the degree must be approved in writing by the Office of the Dean of the School of Engineering. A cumulative GPA of 3.0 or better is required for graduation, and, if applicable, completion of all thesis requirements. A student may not graduate with more than two course grades lower than B–. A student may not graduate with a grade of F in any of the courses attempted.

Those who expect to receive the master’s degree should make clear their intentions to their advisors. A student who completes requirements for the degree at the conclusion of either summer session will be awarded the degree in August of that year; the student must submit a graduation petition online at www.widener.edu/registrar by March 1. A student who completes requirements for the degree at the conclusion of the fall semester will be awarded the degree in December of that year; the student must submit a graduation petition online at www.widener.edu/registrar by July 1. A student who completes requirements for the degree at the conclusion of the spring semester will be awarded the degree in May of that year; the student must submit a graduation petition online at www.widener.edu/registrar by November 1 of the previous year. The university holds only one formal commencement in the spring to which August, December, and May graduates are invited.

A student who petitions for graduation and who, for whatever reason, is not awarded the degree is not permitted to ‘walk-through’ commencement and must re-petition.

DUAL SPECIALIZATION
A student may elect to pursue a dual specialization while achieving their master of science in engineering degree. This is done by choosing courses that apply to both and using electives toward fulfilling the remaining requirements of the specializations. Dual specialization requires a minimum of 39 credits for both the thesis or non-thesis path. In such cases, students must satisfy all requirements of the two programs and complete an additional 9 credits in the second program.

ASSISTANTSHIPS AND FELLOWSHIPS
A limited number of graduate assistantships are available. Assistantship appointments require service to the School of Engineering via participating in research projects or assisting faculty in executing teaching assignments. The assistantships are awarded by the dean upon recommendation of the department. The amount of service does not ordinarily exceed 20 hours per week. Most students who accept assistantship appointments complete their course of study within two years. Tuition reimbursed for graduate assistants is considered taxable income in accordance with current Internal Revenue Service regulations.

Appointments to assistantships are made for one semester only, but may be renewed. Holders of such appointments must devote full-time work to their studies and assistantship commitments. They may not be employed elsewhere without the prior consent of the advisor and the director for graduate programs. Thesis students who accept graduate assistantships and then request a conversion to the non-thesis option are reviewed on a case-by-case basis by the Dean’s Office and may be subject to financial penalty.

The School of Engineering follows the statement of the Council of Graduate Schools in the United States, which is as follows: “In every case in which a graduate scholarship, fellowship, traineeship, or graduate assistantship for the next academic year is offered to an actual prospective graduate student, the student, if he [she] indicates his [her] acceptance before April 15, will have complete freedom through April 15 to submit in writing a resignation of his [her] appointment in order to accept another graduate scholarship, fellowship, traineeship, or graduate assistantship. However, an acceptance given or left in force after April 15 commits him [her] not to accept another appointment without first obtaining formal release for the purpose.”

AWARDS
The Frank and Angela LaVerghetta Award is given annually to a graduating MSE student who has secured the highest cumulative GPA. However, no award will be made if the highest GPA is less than 3.7. In case of a tie, professional contributions of the candidates will be considered in deciding the winner.

The Shirley Kornfield Memorial Graduate Award is presented annually to the student graduating with a MSE in electrical engineering who has secured the highest cumulative GPA.

TRANSCRIPTS
Students in good financial standing may have copies of their transcripts forwarded to employers, agents, or institutions of higher education by contacting the Office of the Registrar.

FINANCIAL AID
Widener University offers a wide range of financial aid programs. Financial information is available on the university’s website and on CampusCruiser.

ANNUAL NOTICE TO STUDENTS
REGARDING EDUCATION RECORDS
The Family Educational Rights and Privacy Act (FERPA) affords eligible students certain rights with respect to their education records. (An “eligible student” under FERPA is a student who is 18 years of age or older or who attends a postsecondary institution.) These rights include:

• The right to inspect and review the student’s education records within 45 days after the day the university receives a
request for access. A student should submit to the registrar, dean, head of the academic department, or other appropriate official, a written request that identifies the record(s) the student wishes to inspect. The university official will make arrangements for access and notify the student of the time and place where the records may be inspected. If the records are not maintained by the university official to whom the request was submitted, that official shall advise the student of the correct official to whom the request should be addressed.

- The right to request the amendment of the student’s education records that the student believes are inaccurate, misleading, or otherwise in violation of the student’s privacy rights under FERPA.

 A student who wishes to ask the university to amend a record should write the university official responsible for the record, clearly identify the part of the record the student wants changed, and specify why it should be changed.

 If the university decides not to amend the record as requested, the university will notify the student in writing of the decision and the student’s right to a hearing. Additional information regarding the hearing procedures will be provided to the student when notified of the right to a hearing.

- The right to provide written consent before the university discloses personally identifiable information (PII) from the student’s education records, except to the extent that FERPA authorizes disclosure without consent.

 The university discloses education records without a student’s prior written consent under the FERPA exception for disclosure to university officials with legitimate educational interests. A university official is a person employed by the university in an administrative, supervisory, academic, research, or support staff position (including, without limitation, law enforcement unit personnel, health staff, athletic coaches and trainers, and admissions counselors and recruiters); a person serving on the board of trustees; or a student serving on an official committee, such as a disciplinary or grievance committee. A university official also may include a volunteer or contractor outside of the university who performs an institutional service or function for which the university would otherwise use its own employees and who is under the direct control of the university with respect to the use and maintenance of PII from education records, such as an attorney, auditor, contractor, consultant, or collection agent, or a student volunteering to assist another university official in performing his or her tasks. A university official has a legitimate educational interest if the official needs to review an education record in order to fulfill his or her professional responsibilities for the university.

 Upon request, the university also discloses education records without consent to officials of another school in which a student seeks or intends to enroll. Such education records may include updated or corrected information, including, without limitation, disciplinary and health records.

- The right to file a complaint with the U.S Department of Education concerning alleged failures by the university to comply with the requirements of FERPA. The name and address of the Office that administers FERPA is:

 Family Policy Compliance Office
 U.S. Department of Education
 400 Maryland Avenue, SW
 Washington, DC 20202

 • The right to withhold public disclosure of any or all items of “directory information” by written notification to the Registrar’s Office of the university or the School of Law, as applicable, within two weeks after the commencement of the fall or spring semesters of any given academic year. Under current university policy, the term “directory information” includes, without limitation, a student’s name, home and campus address, telephone listing(s), electronic mail address, photographs, major field of study, grade level, enrollment status (e.g., undergraduate or graduate, full-time or part-time), dates of attendance, participation in officially recognized activities and sports, weight and height of members of athletic teams, degrees, honors and awards received, and the most recent educational agency or institution attended.

 CAMPUS SAFETY

 CAMPUS SECURITY AND FIRE SAFETY REPORTS

 Widener is committed to the safety and security of all members of the Widener University community. The university’s annual Campus Safety and Fire Safety Reports are on the Widener website and contain information on campus security and personal safety, including crime prevention, university law enforcement authority, crime reporting policies, disciplinary procedures, and other campus security matters. The Campus Safety Reports contain statistics for the three previous calendar years on reported crimes that occurred on campus, in certain off-campus buildings and property owned and controlled by the university, and on public property within or immediately adjacent to and accessible from campus.

 The Fire Safety Report contains information on fire safety systems in on-campus student housing facilities, the number of fire drills held during the previous year, the university’s policies on portable electrical appliances, smoking, and open flames in student housing facilities, the university’s procedures for student housing evacuation in the case of a fire, policies regarding fire safety education and training programs provided to students and employees, a listing of persons or organizations to which fires should be reported, and plans for future improvements in fire safety. It also contains statistics for the three most recent calendar years concerning the number of fires and cause of each fire in each on-campus student housing facility, the number of persons who received fire-related injuries that resulted in treatment at a medical facility, the number of deaths related to a fire, and the value of property damage caused by a fire.

 The annual Campus Safety and Fire Safety Reports are available online at www.widener.edu/campusafety. If you would like a printed copy of these reports, contact the Campus Safety Office at 610-499-4203 to have a copy mailed to you. The information in these reports is required by law and is provided by the Campus Safety Office.
Master of Science in Engineering

BIOMEDICAL ENGINEERING

Biomedical engineering is an interdisciplinary area of study that integrates knowledge from engineering with the biomedical sciences. It is a diverse field. Biomedical engineers work in systems ranging from medical devices to the design of artificial organs. Widener’s research includes nanotechnology application for kidney dialysis, Alzheimer’s detection, and breast cancer therapeutics. Biomedical engineers are interested in being of service to human health but do not routinely interact directly with patients.

The curriculum further students’ skills and understanding of both engineering and the life sciences and provides sufficient flexibility to encourage students to explore specializations within biomedical engineering. The overall aim is to produce high-quality, interdisciplinary engineers who are well-prepared for pursuit of further graduate or professional degrees and careers in industry. Employment opportunities exist in industry, hospitals, academic research institutes, teaching, national laboratories, and government regulatory agencies.

CURRICULUM—REQUIRED COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Sem. hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 616</td>
<td>Engineering Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 618</td>
<td>Engineering Probability & Statistics</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 619</td>
<td>Technical Communications</td>
<td>3</td>
</tr>
<tr>
<td>BME 678</td>
<td>Applications of Biology in BME</td>
<td>3</td>
</tr>
<tr>
<td>Biomedical Engineering Technical Electives</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Technical Elective</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>ENGR 691</td>
<td>Thesis I or Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 692</td>
<td>Thesis II or Technical Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Biomedical Engineering Technical Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 610</td>
<td>Biomedical Microscopic Imaging</td>
</tr>
<tr>
<td>BME 611</td>
<td>Design of Medical Instrumentation</td>
</tr>
<tr>
<td>BME 612</td>
<td>Principles of Medical Imaging</td>
</tr>
<tr>
<td>BME 613</td>
<td>Advanced Cell & Tissue Engineering</td>
</tr>
<tr>
<td>BME 620</td>
<td>Advanced Biomaterials</td>
</tr>
<tr>
<td>BME 621</td>
<td>Biomedical Optics</td>
</tr>
<tr>
<td>BME 623</td>
<td>Biomedical Nanotechnology</td>
</tr>
<tr>
<td>BME 625</td>
<td>Bioseparations</td>
</tr>
<tr>
<td>BME 630</td>
<td>Advanced Biomechanics</td>
</tr>
<tr>
<td>BME 631</td>
<td>Cellular Mechanics</td>
</tr>
<tr>
<td>BME 632</td>
<td>Tissue Mechanics</td>
</tr>
<tr>
<td>BME 646</td>
<td>Advanced Bioheat & Mass Transfer</td>
</tr>
<tr>
<td>BME 651</td>
<td>Medical Devices & Design</td>
</tr>
<tr>
<td>BME 652</td>
<td>Biomedical Microdevices</td>
</tr>
</tbody>
</table>

Technical Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 600</td>
<td>Engineering Project Management</td>
</tr>
<tr>
<td>ENGR 611</td>
<td>Operations Research</td>
</tr>
<tr>
<td>ENGR 636</td>
<td>Finite Element Analysis</td>
</tr>
<tr>
<td>ENGR 695</td>
<td>Independent Research</td>
</tr>
<tr>
<td>BME 694</td>
<td>Special Graduate Engineering Topics</td>
</tr>
<tr>
<td>CHE 626</td>
<td>Process Modeling & Simulation</td>
</tr>
<tr>
<td>EE 654</td>
<td>Algorithms & Data Structures</td>
</tr>
<tr>
<td>EE 655</td>
<td>Microelectronic Circuit Design</td>
</tr>
<tr>
<td>EE 656</td>
<td>Microelectronic System Design</td>
</tr>
<tr>
<td>EE 659</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>EE 661</td>
<td>Database Engineering I</td>
</tr>
<tr>
<td>EE 668</td>
<td>Computer Graphics</td>
</tr>
<tr>
<td>ME 675</td>
<td>Mechanical Behavior of Materials</td>
</tr>
<tr>
<td>ME 680</td>
<td>Advanced Computational Methods</td>
</tr>
<tr>
<td>ME 681</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>ME 683</td>
<td>Heat Transfer</td>
</tr>
<tr>
<td>ME 684</td>
<td>Heat Transfer Processes</td>
</tr>
</tbody>
</table>

CHEMICAL ENGINEERING

The chemical engineering graduate program offers advanced study, with core courses in thermodynamics, transport phenomena, reaction kinetics, and applied mathematics. A wide range of technical electives is available to accommodate the interests of each student. The program confers proficiency in process analysis, synthesis, and design. The environmental engineering option or emphasis in biotechnology via course work and thesis provide the background to apply advanced techniques of chemical engineering to problems in these areas, which are important fields of professional activity for chemical engineers. The thesis option provides additional flexibility—particularly for students pursuing a career in research and development. The option is also valuable for those who wish to carry out an experimental or computer software development program in an area of special interest to them.

CURRICULUM—REQUIRED COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Sem. hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 600</td>
<td>Engineering Research</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 616</td>
<td>Engineering Mathematics I*</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 618</td>
<td>Engineering Probability & Statistics*</td>
<td>3</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>ENGR 691</td>
<td>Thesis I or Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 692</td>
<td>Thesis II or Technical Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

*Choose two of the three engineering mathematics courses with the approval of the student’s advisor.

TECHNICAL ELECTIVES

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 600</td>
<td>Engineering Project Management</td>
</tr>
<tr>
<td>ENGR 616</td>
<td>Engineering Mathematics I*</td>
</tr>
<tr>
<td>ENGR 618</td>
<td>Engineering Probability & Statistics*</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>15</td>
</tr>
<tr>
<td>ENGR 691</td>
<td>Thesis I or Technical Elective</td>
</tr>
<tr>
<td>ENGR 692</td>
<td>Thesis II or Technical Elective</td>
</tr>
</tbody>
</table>

*Recommended
The civil engineering program is designed to provide a balance of traditional civil engineering subjects with courses exploring innovative technologies currently evolving into specializations with significant professional activities. Technical electives make it possible either to concentrate study in traditional areas or to augment course work with emerging technologies. The group of required courses provides depth of knowledge and an analytical perspective that sets the specialized technical electives in context. The environmental engineering option provides the background to apply advanced techniques to environmental problems, an important area of professional activity for civil engineers.

The flexibility of the curriculum allows students to design a program of study tailored to individual career goals and to the demands of the ever-changing marketplace. Students entering the program are normally expected to have a bachelor’s degree in civil engineering. However, in certain cases students with undergraduate backgrounds in related engineering or science disciplines may qualify for admission and will be considered on an individual basis.

CURRICULUM—REQUIRED COURSES

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Courses from Group I or Group II</th>
<th>Technical Electives</th>
<th>ENGR 691 Thesis I or Technical Elective</th>
<th>ENGR 692 Thesis II or Technical Elective</th>
<th>Sem. hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Courses from Group I or Group II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Technical Electives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ENGR 691 Thesis I or Technical Elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ENGR 692 Thesis II or Technical Elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Core Courses: Select 3 courses

- ENGR 600 Engineering Project Management
- ENGR 611 Operations Research
- ENGR 616 Engineering Mathematics I**
- ENGR 618 Engineering Probability & Statistics*
- ENGR 619 Technical Communications
- ENGR 636 Finite Element Analysis**

*Group I students must select ENGR 618.

**Group II students must select ENGR 636 and either ENGR 616 or 618.

Group I—Environmental/Water Resources: Select 3 courses

- CE 602 Process Dynamics in Environmental Systems
- CE 603 Topics in Surface Water Hydrology & Water Quality Monitoring
- CE 605 Innovative Water & Wastewater Treatment Systems
- CE 606 Municipal Solid Waste Engineering Systems
- CE 610 Groundwater Pollution Remediation
- CE 637 Environmental Planning & Assessment
- CE 641 Design of Water Distribution & Sanitary Sewer Systems
- CE 642 Best Practices for Storm Water Control

Group II—Structures: Select 3 courses

- CE 628 Repair & Rehabilitation of Constructed Facilities
- CE 629 Bridge Inspection & Rehabilitation
- CE 631 Advanced Structural Steel Design
- CE 632 Advanced Reinforced Concrete Design
- CE 633 Structural Mechanics
- CE 634 Structural Dynamics
- CE 635 Design of Timber Structures
- CE 639 Structural Stability

TECHNICAL ELECTIVES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 600</td>
<td>Engineering Project Management+</td>
<td></td>
</tr>
<tr>
<td>ENGR 611</td>
<td>Operations Research+</td>
<td></td>
</tr>
<tr>
<td>ENGR 616</td>
<td>Engineering Mathematics I+</td>
<td></td>
</tr>
<tr>
<td>ENGR 618</td>
<td>Engineering Probability & Statistics+</td>
<td></td>
</tr>
<tr>
<td>ENGR 619</td>
<td>Technical Communications+</td>
<td></td>
</tr>
<tr>
<td>ENGR 636</td>
<td>Finite Element Analysis+</td>
<td></td>
</tr>
<tr>
<td>ENGR 695</td>
<td>Independent Research</td>
<td></td>
</tr>
<tr>
<td>BME 625</td>
<td>Bioprocesses</td>
<td></td>
</tr>
<tr>
<td>CHE 621</td>
<td>Transport Phenomena</td>
<td></td>
</tr>
<tr>
<td>CHE 622</td>
<td>Mass Transfer Operations</td>
<td></td>
</tr>
<tr>
<td>CE 601</td>
<td>Land Development</td>
<td></td>
</tr>
<tr>
<td>CE 602</td>
<td>Process Dynamics in Environmental Systems++</td>
<td></td>
</tr>
<tr>
<td>CE 603</td>
<td>Topics in Surface Water Hydrology & Water Quality Modeling++</td>
<td></td>
</tr>
<tr>
<td>CE 604</td>
<td>Environmental Law for Engineers</td>
<td></td>
</tr>
<tr>
<td>CE 605</td>
<td>Innovative Water & Wastewater Treatment Systems++</td>
<td></td>
</tr>
<tr>
<td>CE 606</td>
<td>Waste Incineration & Energy Recovery</td>
<td></td>
</tr>
<tr>
<td>CE 607</td>
<td>Hazardous Waste Management</td>
<td></td>
</tr>
<tr>
<td>CE 608</td>
<td>Municipal Solid Waste Engineering Systems++</td>
<td></td>
</tr>
<tr>
<td>CE 609</td>
<td>Air Pollution Control</td>
<td></td>
</tr>
<tr>
<td>CE 610</td>
<td>Groundwater Pollution Remediation++</td>
<td></td>
</tr>
<tr>
<td>CE 613</td>
<td>Geosynthetics</td>
<td></td>
</tr>
<tr>
<td>CE 628</td>
<td>Repair & Rehabilitation of Constructed Facilities++</td>
<td></td>
</tr>
<tr>
<td>CE 629</td>
<td>Bridge Inspection & Rehabilitation++</td>
<td></td>
</tr>
<tr>
<td>CE 631</td>
<td>Advanced Structural Steel Design+++</td>
<td></td>
</tr>
<tr>
<td>CE 632</td>
<td>Advanced Reinforced Concrete Design+++</td>
<td></td>
</tr>
<tr>
<td>CE 633</td>
<td>Structural Mechanics+++</td>
<td></td>
</tr>
<tr>
<td>CE 634</td>
<td>Structural Dynamics+++</td>
<td></td>
</tr>
<tr>
<td>CE 635</td>
<td>Design of Timber Structures+++</td>
<td></td>
</tr>
<tr>
<td>CE 641</td>
<td>Design of Water Distribution & Sanitary Sewer Systems++</td>
<td></td>
</tr>
<tr>
<td>CE 642</td>
<td>Best Practices for Storm Water Control+++</td>
<td></td>
</tr>
<tr>
<td>CE 643</td>
<td>Ground Improvement</td>
<td></td>
</tr>
<tr>
<td>CE 694</td>
<td>Special Graduate Engineering Topics</td>
<td></td>
</tr>
<tr>
<td>ME 671</td>
<td>Applied Stress Analysis I</td>
<td></td>
</tr>
<tr>
<td>ME 672</td>
<td>Applied Stress Analysis II</td>
<td></td>
</tr>
<tr>
<td>ME 673</td>
<td>Experimental Mechanics</td>
<td></td>
</tr>
<tr>
<td>ME 674</td>
<td>Vibrations</td>
<td></td>
</tr>
<tr>
<td>ME 675</td>
<td>Mechanical Behavior of Materials</td>
<td></td>
</tr>
<tr>
<td>ME 680</td>
<td>Advanced Computational Methods</td>
<td></td>
</tr>
<tr>
<td>ME 681</td>
<td>Fluid Mechanics</td>
<td></td>
</tr>
</tbody>
</table>

+If not taken as a Core Course
++If not taken as a Group I course
+++If not taken as a Group II course
ELECTRICAL ENGINEERING

The electrical engineering program is designed to provide students with a choice of specialized fields of study. Students may select one of the following groups: modern communications, networking and mobile communications, hardware, or software. Students entering the program are expected to have a bachelor’s degree in electrical engineering. However, students with other undergraduate backgrounds may qualify for admissions and will be considered on an individual basis.

CURRICULUM—REQUIRED COURSES

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Sem. hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td>9</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Two Courses from Each Technical Group</td>
<td>12</td>
</tr>
<tr>
<td>ENGR 691 Thesis I or Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 692 Thesis II or Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Core Courses</td>
<td></td>
</tr>
<tr>
<td>ENGR 600 Engineering Project Management</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 616 Engineering Mathematics I or ENGR 618 Engineering Probability & Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

TECHNICAL ELECTIVES

Group I—Modern Communications Group
- EE 645 Optical Communication Systems
- EE 647 Satellite Communications
- EE 648 Geographic Information Processing
- EE 649 Digital Network Switching
- EE 650 Advanced Computer Network Design
- EE 652 Wireless & Cellular Telecommunication
- EE 657 Communications Systems
- EE 658 Computer Communications
- EE 659 Digital Signal Processing
- EE 664 Simulation of Computer Systems
- EE 689 Mobile Computing

Group II—Hardware and Software Group
- EE 644 Microwave Devices & Circuits
- EE 654 Algorithms & Data Structures
- EE 655 Microelectronic Circuit Design
- EE 656 Microelectronic System Design
- EE 660 Operating System Kernel Internals
- EE 661 Database Engineering I
- EE 663 Object-Oriented Programming
- EE 665 Telecommunication Software
- EE 667 Design of Computer Structures
- EE 668 Computer Graphics
- EE 670 Simulation of Business Processes
- EE 687 E-Business Platforms

ENGINEERING MANAGEMENT

Students who have managerial positions or will be assuming managerial responsibilities will find this program especially attractive. It provides an opportunity to combine advanced engineering study with an introduction to the principles and tools of management and decision making. It may not be combined with the thesis option nor incorporated in the dual MSE/MBA program.

CURRICULUM—REQUIRED COURSES

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Sem. hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td>9</td>
</tr>
<tr>
<td>ENGR 612 Stochastic Optimization</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 614 Engineering Management</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 619 Technical Communications</td>
<td>3</td>
</tr>
<tr>
<td>Major Engineering Courses*</td>
<td>12</td>
</tr>
</tbody>
</table>

Core Courses
- ENGR 600 Engineering Project Management | 3 |
- ENGR 611 Operations Research | 3 |
- ENGR 618 Engineering Probability & Statistics | 3 |

Major engineering courses and management electives must be approved by the student’s advisor.
MECHANICAL ENGINEERING

The mechanical engineering program offers post-graduate study in traditional and modern specialties. The curriculum is designed to provide maximum flexibility according to each student’s specific interests. The objective is to enhance professional skills through advanced technical courses that build upon a foundation of mathematical, experimental, and modern computational methods.

CURRICULUM—REQUIRED COURSES Sem. hours

Core Courses ... 9
Courses from Group I or Group II 6
Technical Electives 9
ENGR 691 Thesis I or Technical Elective 3
ENGR 692 Thesis II or Technical Elective 3

Core Courses
ENGR 616 Engineering Mathematics I 3
ENGR 619 Technical Communications 3
ENGR 636 Finite Element Analysis 3

Group I—Solid Mechanics
ME 671 Applied Stress Analysis I** 3
ME 672 Applied Stress Analysis II 3
ME 673 Experimental Mechanics 3
ME 674 Vibrations 3
ME 675 Mechanical Behavior of Materials 3
ME 676 Advanced Mechanical Design 3

** Required for Group I.

Group II—Fluid Thermal
ME 681 Fluid Mechanics 3
ME 682 Computational Fluid Mechanics & Heat Transfer 3
ME 683 Heat Transfer 3
ME 684 Heat Transfer Processes 3
ME 685 Aerodynamics 3
ME 686 Heating, Ventilating, & Air Conditioning 3

TECHNICAL ELECTIVES
ENGR 600 Engineering Project Management 3
ENGR 611 Operations Research 3
ENGR 614 Engineering Management 3
ENGR 617 Engineering Mathematics II 3
ENGR 618 Engineering Probability and Statistics .. 3
CHE 621 Transport Phenomena 3
CE 633 Structural Mechanics 3
CE 634 Structural Dynamics 3
CE 639 Structural Stability 3
CE 640 Theory of Plates & Shells 3
ME 671 Applied Stress Analysis I 3
ME 672 Applied Stress Analysis II 3
ME 673 Experimental Mechanics 3
ME 674 Vibrations 3
ME 675 Mechanical Behavior of Materials 3
ME 676 Advanced Mechanical Design 3
ME 681 Fluid Mechanics 3
ME 682 Computational Fluid Mechanics & Heat Transfer 3
ME 683 Heat Transfer 3
ME 684 Heat Transfer Processes 3
ME 685 Aerodynamics 3
ME 686 Heating, Ventilating, & Air Conditioning 3
ME 694 Special Graduate Engineering Topics 3
ENGR 695 Independent Research 3

DUAL MSE/MBA

This program is designed for students who wish to strengthen their engineering education with advanced work at the graduate level, and who have a sufficiently strong orientation toward management to invest substantial effort toward education in that area as well. The program is jointly administered by the School of Engineering and the School of Business Administration. At the completion of the program, the student is awarded both the master of science in engineering and master of business administration degrees.

The MSE/MBA program is available in all of the engineering majors except engineering management. By means of careful selection and coordination of courses to avoid overlap, the dual degree may be earned with a considerable saving in total time and credit requirements. The minimum total number of credits is 54 with or without thesis. All electives require the approval of the student’s advisor.

The dual MSE/MBA requires separate applications for each degree program. Acceptance into both programs is prerequisite to acceptance as a dual MSE/MBA candidate.

CURRICULUM—REQUIRED COURSES Sem. hours

SCHOOL OF ENGINEERING

Follow all of the requirements as applicable for
- Biomedical Engineering
- Chemical Engineering
- Civil Engineering
- Electrical Engineering
- Mechanical Engineering

SCHOOL OF BUSINESS ADMINISTRATION

BUS 601 Leadership 1.5
BUS 602 Strategic Planning 1.5
BUS 611 Information Systems 1.5
BUS 612 Data Collection, Mining, & Analysis 1.5
BUS 620 Customer & Market Perspectives 1.5
BUS 630 Managing Human Capital 1.5
BUS 640 Process Management 3
BUS 650 Modeling & Forecasting 1.5
BUS 660 Financial Analysis 1.5
BUS 700 Managing for Results 3
Electives .. 6

Total .. 24

In addition to these courses, students must meet all prerequisite requirements and must complete 12 contact hours of noncredit workshops.

Prerequisites:
BUS 510 Applied Quantitative Analysis 3
BUS 520 Accounting & Legal Environment of Business 3
BUS 530 Principles of Economics 3
BUS 550 Organization & Behavior of Management .. 1
BUS 560 Finance Foundation for Managers 3
LAND DEVELOPMENT CERTIFICATE

The land development certificate program gives the practicing professional a solid understanding of the fundamentals of the land development process, blending theory and practice to help develop the skills and understanding needed to succeed in this competitive business.

Admission Requirements

To be accepted in the program, candidates must:

- Have earned a bachelor's degree in engineering or engineering technology. Applicants with bachelor's degrees in related mathematics or science fields will also be considered.
- Have a minimum GPA of 2.5 in their undergraduate degree program, or have earned EIT/PE certification.

CURRICULUM—REQUIRED COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Sem. hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 600</td>
<td>Engineering Project Management</td>
<td>3</td>
</tr>
<tr>
<td>CE 601</td>
<td>Land Development</td>
<td>3</td>
</tr>
</tbody>
</table>

TECHNICAL ELECTIVES (choose two)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 604</td>
<td>Environment Law for Engineers</td>
</tr>
<tr>
<td>CE 605</td>
<td>Innovative Water & Wastewater Treatment Systems</td>
</tr>
<tr>
<td>CE 610</td>
<td>Groundwater Pollution Remediation</td>
</tr>
<tr>
<td>CE 613</td>
<td>Geosynthetics</td>
</tr>
<tr>
<td>CE 637</td>
<td>Environmental Planning & Assessment</td>
</tr>
<tr>
<td>CE 641</td>
<td>Design of Water Distribution & Sanitary Sewer Systems</td>
</tr>
<tr>
<td>CE 642</td>
<td>Best Management Practices for Stormwater Control</td>
</tr>
<tr>
<td>CE 643</td>
<td>Ground Improvement</td>
</tr>
</tbody>
</table>

Program Completion Requirements

To earn the land development certificate, students must earn a minimum grade point average of 2.8.

Matriculation from Certificate into Degree Program

To matriculate from the land development certificate program into our master in civil engineering or engineering management programs, students must complete the certificate program with a B average.

BS/MSE 5-YEAR PROGRAM

The BS/MSE program is available to undergraduate engineering students who are at least in their junior year and possess a minimum grade point average of 3.0. Students may take up to two graduate courses in place of undergraduate technical electives at Widener University and subsequently apply those six credits toward a master of science in engineering degree. There is no additional cost (beyond the full-time undergraduate tuition) to take the graduate courses through the BS/MSE program.

ENGINEERING COURSES

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>15</td>
</tr>
<tr>
<td>Biomedical</td>
<td>16</td>
</tr>
<tr>
<td>Chemical</td>
<td>17</td>
</tr>
<tr>
<td>Civil</td>
<td>18</td>
</tr>
<tr>
<td>Electrical</td>
<td>19</td>
</tr>
<tr>
<td>Mechanical</td>
<td>22</td>
</tr>
<tr>
<td>Dual Degree Business</td>
<td>23</td>
</tr>
</tbody>
</table>

ENGR 600 ENGINEERING PROJECT MANAGEMENT

This course focuses on the theory, technique, and applications regarding planning, performing, and controlling technical projects. Topics include project management terminology, project feasibility and market forces, forming project teams, time management, project planning, negotiation and conflict resolution, cost estimation and budgeting, project control and auditing, and deliverables, termination and close out, and liability. Students are introduced to contemporary project management software. Case studies supplement class discussions. 3 semester hours

ENGR 611 OPERATIONS RESEARCH

An introduction to the use of decision-making models, including linear programming, integer programming, networks, transportation and assignment problems, dynamic programming, Markovian models, queuing, and nonlinear programs. 3 semester hours

ENGR 612 STOCHASTIC OPTIMIZATION

Modeling, analysis, and optimal design of stochastic engineering, management, and operational systems. The techniques of operations research are used. Topics include steady state analysis of single and multiple server queues; economic decisions in queuing systems; stochastic inventory models and effect of set-up cost; Markov chains and Chapman-Kolmogorov equations; Markov decision problems; policy improvement and discounted costs; system reliability and redundancy; decision analysis under risk and uncertainty and decision trees; and simulation, random number generation, and the Monte-Carlo technique. Prerequisites: ENGR 611 or equivalent; ENGR 618 is recommended. 3 semester hours

ENGR 614 ENGINEERING MANAGEMENT

This course introduces students to the fields of management and business analysis in both industrial and consumer markets. The course exposes students to the multidisciplinary nature of engineering management and covers the different functional areas with an emphasis on the engineering manager. Topics include management tasks and responsibilities, organizational structures, managing change, ethical considerations, strategy formulation, decision-making processes, statistical analysis, mathematical models, forecasting profitability, budgets, and financial controls. The course integrates case studies and projects, as well as provides opportunities for students to develop their writing and communication skills. 3 semester hours

ENGR 616 ENGINEERING MATHEMATICS I

The course begins with a review of linear algebra, matrices, and determinants. Later topics include solution of linear equations, Eigen-value problems, power series, Fourier series, elements of numerical analysis of ordinary and partial differential equations using software techniques search techniques. 3 semester hours

ENGR 617 ENGINEERING MATHEMATICS II

Topics include vector calculus and differential operators; line and surface integrals; Green’s theorem, Divergence theorem, and Stokes’ theorem; ordinary differential equations; and initial value problems and linear boundary value problems. Partial differential
The course is graded on a pass/fail basis only. The course may be ended by a faculty member.

ENGR 618 ENGINEERING PROBABILITY AND STATISTICS
Topics include probability and random variables; sets, events, and probability space; joint, conditional, and total probability; Bayes’ theorem; combinatorics; continuous and discrete distributions; sampling distributions; parameter estimation; hypothesis testing; regression analysis; analysis of variance; and stochastic processes. 3 semester hours

ENGR 619 TECHNICAL COMMUNICATIONS
This course provides practical experience in written and oral communication techniques for technical material. A major focus is analyzing audiences and purpose for individual situations. Audiences range from expert and technical to lay; the purpose varies from simply describing and informing to deftly instructing and persuading. Through didactic materials, text examples, and online activities, students craft documents and presentations on their own topics. Students also review the practical elements of grammar and syntax critical for controlling flow, emphasis, and clarity. 3 semester hours

ENGR 636 FINITE ELEMENT ANALYSIS
This course introduces the theory and application of the finite element method. Topics include the development of the matrix equations, interpolation using basic shape functions for a variety of element types, implementation of boundary conditions, and solution methods. Emphasis is placed on problems of engineering interest and a commonly used commercial finite element package is introduced. 3 semester hours

ENGR 691 THESIS I
3 semester hours

ENGR 692 THESIS II
3 semester hours

ENGR 693 THESIS CONTINUATION
Faculty supervision of the thesis activity for those students having already completed two semesters of thesis work. (Fee basis: 1.5 semester hours.) No semester hours

ENGR 694 SPECIAL GRADUATE ENGINEERING TOPICS
Offering of special topics to graduate students when there is sufficient demand and faculty interest. 3 semester hours

ENGR 695 INDEPENDENT RESEARCH
The student, under the general supervision of a faculty member, pursues an approved research topic of his or her own choice. The student is encouraged to investigate areas for which background material is not included in the regular curriculum. In this activity, the student should become progressively more independent, collecting and formulating data in the manner required of graduate thesis work. Enrollment is restricted to students recommended by a faculty member. 3 semester hours

ENGR 698 GRADUATE COOPERATIVE EDUCATION
Students are placed in an engineering employment position for one semester, working with the Graduate Cooperative Education Office. Positions are not guaranteed, as students are required to interview with and be hired by interested companies. Students are required to successfully complete their employment placement, meeting all job requirements. In addition, students must submit their job title and job description to the faculty advisor early in the semester and submit a written report and/or an oral presentation to receive a final grade at the close of the semester. The course is graded on a pass/fail basis only. The course may be taken a maximum of three times. Prerequisites: Cumulative GPA at or above 3.0. Students must have completed at least two full-time semesters in the graduate engineering program. (Credit hours do not satisfy graduation or degree requirements.) 3 semester hours

BIOMEDICAL ENGINEERING

BME 610 BIOMEDICAL MICROSCOPIC IMAGING
This course focuses on principles and description of microscopy techniques (light, electron, and atomic force microscopy) for application to biomedical research. 3 semester hours

BME 611 DESIGN OF MEDICAL INSTRUMENTATION
This course covers the principles, applications, and design of medical instrumentation, as well as medical imaging, electrical safety, and measurement of ventilation, blood pressure, and flow. 3 semester hours

BME 612 PRINCIPLES OF MEDICAL IMAGING
This course focuses on the basic physics and the mathematical descriptions of imaging principles for all major medical modalities: X-Ray, CT, MRI, SPECT/PET, US. The course presents a detailed analytical and quantitative illustration of the concepts of image resolution, SNR, and scan time, and an in-depth discussion of the problem between detected signal and image source for these major medical modalities. 3 semester hours

BME 613 ADVANCED CELL & TISSUE ENGINEERING
This course covers the basic science principles of wound healing, regeneration, and repair through remodeling, as well as cellular engineering principles such as energy balance between cells and their environment (metabolism), gene therapy, and stem cell physiology and therapeutic applications. The course also covers tissue scaffold design, bioreactors in tissue engineering, and molecular surface modifications for integration of engineered tissues in situ. 3 semester hours

BME 620 ADVANCED BIOMATERIALS
This course covers the clinical uses of biomaterials as components in medical devices, implants, and artificial organs, as well as the characterization of the physical, chemical, biochemical, and surface properties of these materials. Topics include biological interactions of biomaterials, regulatory and ethical issues, current biomaterials technologies, and future directions. 3 semester hours

BME 621 BIOMEDICAL OPTICS
This course introduces students to principles of optical photon transport in biological tissue and optical imaging technologies. The course covers ballistic imaging, optical coherence tomography, Mueller optical coherence tomography, diffuse optical tomography, photoacoustic tomography, and ultrasound-modulated optical tomography. 3 semester hours

BME 622 PHYSIOLOGICAL ENGINEERING
This course covers quantitative physiology, implantable materials and biological response, cell and tissue behavior and properties, biomolecules, and tissue engineering. 3 semester hours

BME 623 BIOMEDICAL NANOTECHNOLOGY
This course introduces the basics of nanotechnology in biomedical applications. The course covers nanomaterials in biomedical applications and nanofabrication. This course also presents applications of nanotechnology, such as drug delivery, imaging and diagnostics, and tissue regeneration and engineering. 3 semester hours
BME 625 BIOSEPARATIONS
This course is an exploration of the principles, approaches, and techniques relevant to the separation and downstream processing of biologically produced molecules. Protein purification, recovery of small biomolecules (amino acids and antibodies), and the isolation of primary metabolites will be covered. Particular attention will be paid to the physical chemistry of biological molecules in solution. This approach will result in the development of efficient separation techniques for biomolecules while maintaining biological activity. 3 semester hours

BME 630 ADVANCED BIOMECHANICS
This course provides students with an in depth knowledge in biomechanical analysis of fundamental human movements. The course covers anatomical foundations and mechanical principles involved in human motion. 3 semester hours

BME 631 CELLULAR MECHANICS
This course introduces students to the principles of cell mechanics and mechanotransduction in biological processes. The course covers measurement of mechanical properties of cells, cytoskeleton mechanics, models of cell mechanical properties, cell adhesion, effects of physical forces on cell function, and mechanotransduction. 3 semester hours

BME 632 TISSUE MECHANICS
This course introduces the mechanical properties of tissues and fluids. The course exercises static force analysis, optimization theory, fluid mechanics on bone, fibrous tissues, blood vessels, musculoskeletal and cardiovascular, and other biological systems. 3 semester hours

BME 646 ADVANCED BIOHEAT AND MASS TRANSFER
This course combines the basic principles and theories of transport in biological systems with fundamental bioengineering. It provides real-world applications in tissue engineering, cryobiology, and artificial organs. Considerable significance is placed on developing a quantitative understanding of the underlying physical, chemical, and biological phenomena. Therefore, many mathematical methods are developed using compartmental approaches. 3 semester hours

BME 651 MEDICAL DEVICES AND DESIGN
This course introduces the common medical devices used in hospitals and the design principles and methodology for these devices. Topics include cell-matrix control volumes, stress analysis in the design process, selection of biomaterials, and safety and efficacy of medical devices. 3 semester hours

BME 652 BIOMEDICAL MICRODEVICES
This course focuses on the design, characterization, and microfabrication of the biomedical microdevices, such as Micro-Electro-Mechanical Systems, micro-fluidic device, and nanotechnology. 3 semester hours

BME 660 REGULATORY ASPECT OF BIOMEDICAL ENGINEERING
This course focuses on FDA regulatory structure and the different classes of medical devices, as well as what levels of testing are required for each class. The course covers pharmaceutical regulatory pathways and Phase I, Phase II, and Phase III testing. 3 semester hours

BME 670 METHODS OF ANALYSIS IN BIOENGINEERING
This course introduces the applied analytical and numerical mathematical methods for solving biomedical engineering problems. The course also presents the statistical methods for the design of experiments and analysis of experimental data in biomedical research. 3 semester hours

BME 678 APPLICATIONS OF BIOLOGY IN BME
This course focuses on the basic science knowledge used by biomedical engineers. Emphasis is placed on applying engineering principles to solve problems in human medicine. The course covers molecular/cellular biology, human physiology, and the application of the biology knowledge to subspecialties of biomedical engineering. Prerequisite: Permission of the instructor. 3 semester hours

CHEMICAL ENGINEERING

CHE 621 TRANSPORT PHENOMENA
Topics include continuum and molecular theories of matter; velocity distributions in laminar and turbulent flow; boundary-layer analysis; simultaneous momentum, energy, and mass transport; transport analogies; convective and radiative heat transfer; molecular and turbulent diffusion; simultaneous diffusion and chemical reaction. 3 semester hours

CHE 622 MASS-TRANSFER OPERATIONS
Topics include the theory of equilibrium stage and continuous contact operations; equilibrium relationships; stage efficiencies and mass-transfer rates; selection of separation processes and equipment configurations; and applications to binary and multicomponent distillation, gas absorption, liquid extraction, air-water operations, and adsorption. 3 semester hours

CHE 623 CHEMICAL ENGINEERING THERMODYNAMICS
Topics include equations of state for mixtures; thermodynamics of non-ideal solutions; phase equilibria in complex systems; chemical equilibria in homogeneous, heterogeneous, and electrolytic systems; thermodynamic consistency; estimation of thermochemical and thermophysical data; entropy and probability; the Third Law; thermodynamics of energy conversion; and introduction to irreversible thermodynamics. 3 semester hours

CHE 624 APPLIED REACTION KINETICS & CATALYSIS
Topics include reaction-rate theory; kinetics of complex homogeneous reactions; effects of temperature and residence-time distribution; characterization of porous catalysts; kinetics of heterogeneous catalytic gas-solid reactions; external and internal coupled transport processes in porous catalysts; design of fixed- and fluidized-bed catalytic reactors; kinetics of fluid-fluid reactions with applications to reactor design; and laboratory reactors, analysis of experimental data, and scale-up. 3 semester hours

CHE 626 PROCESS MODELING & SIMULATION
Topics are modeling and simulation of chemical engineering systems including distillation columns, gas absorbers, chemical reactors, and heat exchangers. Process identification techniques are also studied. 3 semester hours

CIVIL ENGINEERING

CE 601 LAND DEVELOPMENT
This integrated theory and applications course focuses on urban area site planning, including the methodology used to subdivide, develop, or redevelop a property. Topics include site planning analysis, zoning, and municipal ordinances, subdivisions, site density, physical constraints, sustainability, environmental concerns, techniques for acquisition of data (mapping, traffic studies, ordinance requirements, and approval process), storm water management and erosion control, site grading, sanitary sewers and water
systems, streets and parking lots, specifications and plans, and construction layout and inspection. 3 semester hours

CE 602 PROCESS DYNAMICS IN ENVIRONMENTAL SYSTEMS

This course provides a fundamental understanding of the physical, chemical, and biological processes governing the fate and transport of pollutants in natural and engineered environmental systems. It serves as a basis for continued study in specialized areas such as air pollution control, water and wastewater treatment, hazardous waste management, and groundwater pollution remediation. Topics include material balances, transport processes, and chemical and biological reactions. Prerequisite: ENGR 617 or knowledge of calculus and differential equations. 3 semester hours

CE 603 TOPICS IN SURFACE WATER HYDROLOGY AND WATER QUALITY MODELING

Selected topics in hydrologic engineering and water quality modeling, including frequency analysis of hydrologic events and rainfall-runoff analysis; design and analysis of storm sewers and storm water detention basins; water quality impacts of storm water runoff; development and application of water quality models to assess pollutant impact and transport in lakes, streams, and estuaries; analysis of pollutant reaction kinetics. Prerequisite: Undergraduate background in hydrology and water/wastewater treatment systems. 3 semester hours

CE 604 ENVIRONMENTAL LAW FOR ENGINEERS

Local, state, and federal acts and regulations and their effect on environmental restoration and waste management. Topics include the history of environmental regulations and the environmental regulatory process, as well as the major requirements for compliance under the following environmental statutes: CAA, CWA, CERCLA, RCRA, SARA, TSCA, NEPA, SDWA, and others. Potential areas of modification of environmental laws. 3 semester hours

CE 605 INNOVATIVE WATER AND WASTEWATER TREATMENT SYSTEMS

This course provides a background in the design and analysis of innovative water and wastewater treatment systems with an emphasis on the design of small systems for new developments or retrofitting existing treatment systems. A review of conventional water and wastewater treatment practices is provided as an introduction. 3 semester hours

CE 606 WASTE INCINERATION & ENERGY RECOVERY

This course covers the basic principles of combustion, including the theory of several processes, fundamentals and design of equipment for waste incineration, and design principles and their application to municipal and hazardous waste incineration facilities. 3 semester hours

CE 607 HAZARDOUS WASTE MANAGEMENT

A comprehensive introduction to hazardous waste management, including laws and regulations, identification and analysis, risk assessment, and techniques and technologies for control and treatment. 3 semester hours

CE 608 MUNICIPAL SOLID WASTE ENGINEERING SYSTEMS

This course covers generation, storage, collection, transport, processing, recovery, and disposal of municipal solid wastes, including economic and environmental aspects. Integrated municipal solid waste engineering is stressed. 3 semester hours

CE 609 AIR POLLUTION CONTROL

This course covers the nature of the air pollution problem and its effects on the public at large; air quality standards; characterization of particles and aerosols; particle dynamics; principles and design of control devices including centrifuges, electrostatic precipitators, filters, and wet scrubbers. 3 semester hours

CE 610 GROUNDWATER POLLUTION REMEDIATION

This course presents the nature of subsurface pollution and the sources of the pollution, along with techniques of analyzing pollution movement and monitoring. Methods of design for control of subsurface migration and treatment of contaminated groundwater are also covered. 3 semester hours

CE 613 GEOSYNTHETICS

This course covers applications of geosynthetics including geotextiles, geogrids, geomembranes, geonets, geocomposites, and geosynthetic clay liners. Geosynthetics functions and mechanisms including separation, filtration, drainage, reinforcement, and containment are also covered. Students study design with geosynthetics for roadways, embankments/slopes, earth retaining structures, landfills, and site remediation. Prerequisite: Undergraduate soil mechanics course. 3 semester hours

CE 627 PERFORMANCE EVALUATION OF CONSTRUCTED FACILITIES

This course covers the techniques and methods of analysis for evaluating the performance of a wide range of constructed facilities including highways, bridges, dams, buildings, tunnels, sewers, water distribution systems, and landfills. Various instrumentation systems and/or observational techniques are included, along with sample analyses to determine both structural and functional performance. 3 semester hours

CE 628 REPAIR & REHABILITATION OF CONSTRUCTED FACILITIES

There are a growing number of bridges, buildings, and special-purpose (e.g., towers, chimneys, pipelines) structures that have deteriorated over many years of service and/or as the result of unforeseen environmental conditions or too-long-deferred maintenance. In addition, better understanding of structural behavior under seismic loads has led to the identification of serious shortcomings in a significant number of structures constructed prior to the mid-1970s. This course investigates repair and strengthening techniques for masonry, concrete, wood, and steel structures; mechanics of behavior and methods of analysis/evaluation for beams, columns, walls, slabs, and connections; and construction methodologies. 3 semester hours

CE 629 BRIDGE INSPECTION & REHABILITATION

A significant number of bridge structures, which performed well for many years, show deterioration under severe service and environmental conditions. These structures can remain serviceable with proper rehabilitation and maintenance. This course investigates inspection, repair, and strengthening techniques for various types of bridge structures. Topics include maintenance policy principles, types of distress, bridge inspection and diagnostic testing, bridge structure repair and strengthening methods, bridge foundation rehabilitation, and load capacity evaluation. 3 semester hours

CE 630 ADVANCED COMPOSITES IN CONSTRUCTION

Advanced composites for use in the construction industry have begun to generate considerable worldwide interest and expectation. This course provides an overview of how composites may be used as stand-alone structural shapes, and as reinforcement for prestressed and non-prestressed concrete. Course topics include
the physical and chemical properties of constituent materials and resins and the manufacturing processes commonly used in producing composite materials for the construction industry; engineering properties of typical structural composites; test methods and performance-based standards; techniques for analysis; design considerations and philosophy; serviceability and durability; applications of composite materials in large integrated structural systems, and for the repair and rehabilitation of deteriorated structures; barriers to implementation, legal/liability concerns, and economics. 3 semester hours

CE 631 ADVANCED STRUCTURAL STEEL DESIGN
This course covers behavior and design of columns, beam-columns, and single and multiistory frames with a review of the latest building specifications. Selected topics include the design of structural systems, system stability, torsion effects, deflection analysis, plate girders, building connections, composite construction, and computer-aided designs. Prerequisite: Undergraduate background in reinforced concrete design. 3 semester hours

CE 632 ADVANCED REINFORCED CONCRETE DESIGN
This course covers behavior, analysis, and design of reinforced concrete elements and structures for flexure, shear and diagonal tension, axial compression and bending, and development of reinforcement. Techniques for calculating deflections and a review of current ACI code requirements are also covered. Selected topics include torsion, slab systems, yield line analysis, and composite construction. Prerequisite: Undergraduate reinforced concrete design. 3 semester hours

CE 633 STRUCTURAL MECHANICS
Students analyze framed structures using matrix flexibility and stiffness methods. Topics include analysis of structural systems using substructures, nonprismatic and curved members, secondary effects, elastic foundations, and plastic and large-deflection analysis. Prerequisite: ENGR 616 or knowledge of matrix algebra. 3 semester hours

CE 634 STRUCTURAL DYNAMICS
This course covers the dynamic response of structures modeled as single degree of freedom systems, shear buildings, discrete multidegree of freedom systems, and distributed properties. Topics include earthquake analysis by response history and response spectrum, and structural dynamics in building codes. Prerequisite: ENGR 617 or knowledge of differential equations. 3 semester hours

CE 635 DESIGN OF TIMBER STRUCTURES
Topics include basic wood properties and design considerations for a variety of timber structures; behavior and design of beams, columns, and beam-column members; plywood and glue-laminated members; design of structural diaphragms and shear walls; and connection design. 3 semester hours

CE 637 ENVIRONMENTAL PLANNING & ASSESSMENT
This course provides tools for the planning of environmental management programs and the assessment of environmental impacts. Topics include sources of environmental degradation, economic implications, standards, environmental impact statements, and methods for the assessment of land, water, air, and noise pollution impacts. 3 semester hours

CE 638 PRESTRESSED CONCRETE DESIGN
Topics are prestressed materials, methods, and systems; behavior and design of members subjected to axial forces, flexure, shear, and torsion; effect of various prestress losses; partial prestressing, load balancing, and composite design; anchorage-zone design; and applications to continuous beams and frames, slabs, and bridge design. Prerequisite: Undergraduate background in reinforced or prestressed concrete design. 3 semester hours

CE 639 STRUCTURAL STABILITY
Topics include principles and theory of structural stability; analytical and numerical methods for the treatment of elastic instability; buckling problems in beams, columns and plate elements, and frames; lateral and torsional instability; and energy and numerical methods. Prerequisite: ENGR 616 or knowledge of differential equations and matrix algebra. 3 semester hours

CE 640 THEORY OF PLATES & SHELLS
Topics include the classical theory of bending of thin plates of various shapes and boundary conditions; energy principles and approximate methods of solution; thick plates and large deflection theory; and membrane and bending theories of shells of revolution and shallow shells. 3 semester hours

CE 641 DESIGN OF WATER DISTRIBUTION AND SANITARY SEWER SYSTEMS
This course covers the theory and practice of designing water distribution systems and sanitary sewer systems for municipalities. Topics include selection of pumps and design of pump stations, hydrodynamics of pipe flow, the design and analysis of water distribution networks, flow in open channels, and sanitary sewer design. Prerequisite: Undergraduate fluid mechanics course. 3 semester hours

CE 642 BEST PRACTICES FOR STORM WATER CONTROL
This course provides a review of recommended best management practices (BMPs) for storm water control for new and existing developments, including the design of storm water conveyance systems, storm detention ponds for water quality and quantity control, infiltration and recharge zones, and riparian buffers for erosion control. 3 semester hours

CE 643 GROUND IMPROVEMENT
This course covers the mechanisms of soil stabilization by mechanical methods (compaction, explosives, vibroflotation, vibroreplacement), hydraulic methods (groundwater lowering, preloading, electro-osmosis), physical/chemical methods (admixtures, grouting, freezing), and inclusions (geosynthetics, reinforcements). Prerequisite: Undergraduate soil mechanics course. 3 semester hours

ELECTRICAL ENGINEERING

EE 644 MICROWAVE DEVICES & CIRCUITS
This course presents the basic principles, characteristics, and applications of commonly used microwave devices and techniques for analyzing and designing microwave circuits. Topics include aspects of plane wave propagation, reflection and transmission, transmission line theory, Smith charts, impedance matching, waveguides, microwave cavities, S-parameters, hybrid circuits, couplers, isolators, transistors, tunnel diodes, TEDs, ATTDs, linear beam tubes (Klystrons), strip lines, and microstrip. Prerequisites: Undergraduate background in electromagnetics and solid state electronics. 3 semester hours

EE 645 OPTICAL COMMUNICATION SYSTEMS
This course explores the operation of generic optical communication systems through an in-depth treatment of both the individual system components, such as optical sources (LED/LD), detectors (PIN/APD), and optical fiber (Multimode, SI, GRIN,
DSF), as well as the integrated system characteristics (rise-time, bandwidth, data rate, eye diagrams, attenuation, PB). In addition, the course will cover optical amplifiers (EDFA), which have been responsible for the current trend toward wave-division multiplexing (WDM) in long haul, large capacity data systems. Fundamental principles in semiconductor concepts, electromagnetic theory, communications theory, and electronics will be discussed. Prerequisite: Undergraduate background in electrical engineering recommended. 3 semester hours

EE 647 SATELLITE COMMUNICATIONS
This course is an introduction to theory and applications of satellite communications. Topics include both geosynchronous and non-geosynchronous satellite orbits, ground station look angles, signal propagation, link budgets, noise models, modulation, coding, noise reduction, ground station systems, and applications. Special emphasis is placed on understanding and implementing the relevant calculations. 3 semester hours

EE 648 GEOGRAPHIC INFORMATION PROCESSING
This course presents computations, analytical methods, and graphical representation for geographical information systems (GIS). Topics include spherical trigonometry, data models, coordinated transformations, digital filtering, terrain mapping, analysis of attributes over terrain, and spatial interpolation. In homework assignments and classroom workshops, students use these computational methods for processing of geographic information. Applications to electromagnetic wave propagation, magnetic field surveys, and hydrology are offered as extended examples. Coursework requires the use of a mathematical analysis package. 3 semester hours

EE 649 DIGITAL NETWORK SWITCHING
This course covers the following: Switching fundamentals—matrix, multistage, shared memory, bus, and multiple bus switching fabrics; blocking, strictly nonblocking, and rearrangeable nonblocking switches. Space-division, time-division, and combined space- and time-division switching. Controller-based and self-routing switching; synchronous, frame, and cell/packet switching; Clos, Benes, Banyon, Knockout, Multistage Batcher-Banyon, Tandem Banyon, shuffle, toroidal, and recirculating switches. Buffer strategies, cut-through switching, multicasting, and priority handling; optical switching. Throughput, delay, and complexity performance analysis and implementation issues. Switching architectures for telephone, local-area to broadband networks, asynchronous transfer mode, and communication satellites, and their interconnections. 3 semester hours

EE 650 ADVANCED COMPUTER NETWORK DESIGN
Topics include data communication and high speed network essentials; in-depth study of physical data; network and transport layer protocols covering Ethernet, token ring, FDDI, X.25, frame relay, leased lines, ATM, SDLC, HDLC, LLC frames, MAC addressing, TCP/IP, IPX/SPX, AppleTalk, DECnet and other bridging, switching, routing techniques; connectivity from LAN to LAN, LAN to WAN, and WAN to WAN; design of internet and intranet connectivity using OP and other protocols; introduction to firewall and security; and network management, as time permits. Students will be encouraged to use COMMNET III for network simulation and testing. Prerequisite: EE 658. 3 semester hours

EE 652 WIRELESS & CELLULAR TELECOMMUNICATION
Topics include mobile and fixed wireless systems—cellular and point-to-point technologies. Wireless LANs, wireless STM (synchronous transfer mode), wireless cable, wireless local loops, microwave and satellite systems, cordless telephones, PCS (personal communication systems), and multimedia and video mobile services. Cellular concepts for macro-, micro-, and picocellular networks; frequency reuse, hand-offs, channel interference. Radio propagation effects of reflection, diffraction and scattering; use of microwave, millimeter, and optical infrared frequencies; climatic effects, directional and multiple antennas. Large-scale propagation models of path loss in irregular terrain, urban areas, microcells, and buildings. Small-scale models of fading, time-delay spread, and Doppler spread due to multipaths, movement of transmitter/receivers, or of surrounding objects and transmission bandwidth; statistical models of fading. Digital modulation—QAM (quadrature amplitude modulation), MSK (minimum shift keying), Gaussian MSK, spread spectrum, adaptive and multicarrier modulation. Signal processing to improve quality; adaptive equalization, diversity techniques, block and convolutional coding, trellis-coded modulation. Access methods—time, frequency, and space-division, frequency hopping and code division, and random access packet radio, inter-networking, signaling, and national and international standards. Prerequisite: EE 657. 3 semester hours

EE 654 ALGORITHMS & DATA STRUCTURES
Fundamental algorithms and data structures for list and tree processing and for sorting, searching, traversing, and backtracking are discussed. More advanced algorithms for engineering use, such as graph processing, inference engines, network flow, and shortest path algorithms are also covered. Extensive programming in a structured language is required. Prerequisite: Programming experience in a structured language, such as C, C++, Java, or Ada. 3 semester hours

EE 655 MICROELECTRONIC CIRCUIT DESIGN
This course covers integrated circuit design and fabrication; devices and models; analog and digital circuit design, simulation, and fabrication layout. A special feature of this course is actual fabrication of student-designed integrated circuits. 3 semester hours

EE 656 MICROELECTRONIC SYSTEM DESIGN
This course covers VLSI circuit design; hierarchic layout techniques; circuit building blocks, including computing elements; testing, and testability design. A special feature of this course is laboratory testing of integrated circuits fabricated in EE 655. Prerequisite: EE 655. 3 semester hours

EE 657 COMMUNICATIONS SYSTEMS
This course is an advanced level presentation of the fundamental concepts employed in modern communications. Topics include linear and nonlinear analog modulation; pulse code modulation methods; digital modulation (OOK, PSK, FSK, etc.), and coding methods; system concepts and system performance in the presence of noise. Prerequisite: Knowledge of Fourier analysis, probability, and statistics through appropriate course work. 3 semester hours

EE 658 COMPUTER COMMUNICATIONS
Students learn advanced concepts in modern computer communications systems with emphasis on the OSI layered protocol model, including an introduction to network software modules. Additional topics include physical layer standards, bit stuffing and error control through checksums and protocol design with Petri-net modeling in the data link layer, the functions of
repeaters and bridges, and the development of routing algorithms in the network layer, as well as shortest path and maximal flow algorithms. Treatment of the transport layer includes an introduction to the control protocol and internet protocol (TCP/IP). A special feature of the course is an introduction to the use of commercial network simulation tools. 3 semester hours

EE 659 DIGITAL SIGNAL PROCESSING
Topics include a review of sampling; properties of discrete-time signals and linear systems; Fourier analysis of continuous and discrete-time signals; the z-transform and its properties; sampling in time and frequency; the discrete-time Fourier transform (DFT); implementation of FIR and IIR discrete-time systems; design of FIR and IIR digital filters. Prerequisites: Knowledge of the continuous-time Fourier transform; some familiarity with discrete-time systems and the z-transform is recommended. 3 semester hours

EE 660 OPERATING SYSTEM KERNEL internals
Topics include architecture, algorithms, and data structures of the kernel, the inner core of an operating system, with primary study of UNIX and examples from other operating systems, such as Windows. Operating system layered design; relation of the kernel to the hardware, shells, program libraries, system call interfaces, and user programs. Entry into the kernel through system calls and hardware interrupts; interrupt vector table/system control block. Timesharing concepts, clocks, quantum (time slice), context switching, clock interrupt handler. Processor definition, properties, and states (user mode, kernel mode, sleeping, swapped, pre-empted, zombie, etc.). Kernel process data structures; virtual addressing, paging and swapping policies. Creation of child processes using system calls (fork and exec). Shell operation and kernel start-up. Algorithms and data structures for scheduling processes. Software signal mechanism. Kernel implementation and uses of interprocess communication—pipes, messages, semaphores, shared memory, sockets. Other possible topics include file processes. Softw are signal mechanism. Kernel implementation and I/O subsystems and device drivers, and extensions for distributed and real-time operating systems. 3 semester hours

EE 661 DATABASE ENGINEERING I
Topics include database systems theory and applications to engineering problems; hierarchical, network, and relational database models; relational query languages, optimization of relational queries, and relational normalization; deductive, object-oriented, and distributed databases; and issues of security and integrity. 3 semester hours

EE 662 KNOWLEDGE ENGINEERING SYSTEMS
Topics include representation of knowledge, interface through formal logic, expert systems, inexact knowledge, Baysian interface, fuzzy logic, frame-based systems, neural networks, and the engineering design of interface systems, with examples. Some knowledge of computer programming is strongly recommended. 3 semester hours

EE 663 OBJECT-ORIENTED PROGRAMMING
This course covers abstraction and object-oriented programming and their role in achieving software reusability, ensuring software quality and, where applicable, safety, as in medical, communication, military, and robotics applications. Extensive laboratory examples and exercises. Prerequisite: EE 654 or extensive C++ experience. 3 semester hours

EE 664 SIMULATION OF COMPUTER SYSTEMS
This course will present the techniques needed for simulation of mobile computing systems. This includes the generation of random variables for simulation, modeling, and evaluation of mobile computing configuration. Results will be displayed using object-oriented graphical methods with a commercial simulation language. An extensive simulation project will be completed during the course. Prerequisite: Knowledge of probability and statistics. 3 semester hours

EE 665 TELECOMMUNICATION SOFTWARE
This course covers software system design and implementation for telecommunication systems and components, with a focus on optimizing software performance. Software for layered communication protocols, including finite-state machines for protocol implementation, buffer pool management, timer service routines, interlayer interfaces, and application program interfaces. Interrelated operating system mechanisms, including process models (context switching vs. procedure calls), interprocess communication, remote procedure calls, process scheduling and priority. Use in telecommunication software of linked lists, queues, stacks, tables and control blocks, and implementation of algorithms for tasks such as event handling using software clocks, delta lists, and timing wheels, message fragmentation and reassembly, encryption and cyclic redundancy coding. Software design of high speed protocols for lightweight networks, and multiprocessor implementation of protocols. Telephone network software for call processing, control of modern distributed switching systems, Signaling System No. 7 protocol and the services it supports, such as the Advanced Intelligent Network, mobile roaming capabilities, personal communication services, and asynchronous transfer mode. Software modems. Prerequisite: EE 654 or programming experience in a structured language. 3 semester hours

EE 667 DESIGN OF COMPUTER STRUCTURES
Focus is on hardware design and test of digital systems at the logic and register levels of design, with emphasis on review of fundamental concepts; design of combinational, asynchronous and synchronous logic structures; programmable logic structures; algorithms and hardware descriptive languages, arithmetic algorithms, and arithmetic logic structures, both fixed and floating point; memories; error detecting and correcting codes (EDAC); logic and memory test; introduction to design of systems on a chip (SOC). Prerequisite: Undergraduate background in electronics and logic circuit design. 3 semester hours

EE 668 COMPUTER GRAPHICS
Basic concepts of raster graphics algorithms and systems, geometrical transformations, 3D viewing, halftoning techniques, color models, illumination models, interactive graphics, and curve and surface representation. Advanced topics selected from shading and ray-tracing, visible-surface determination, representation of solids, texture modeling using fractals, image processing, and animation. Prerequisites: Programming experience in C/C++, ENGR 616, or undergraduate background in engineering or science including basic linear algebra. 3 semester hours

EE 669 COMPUTER ARCHITECTURE
An overview of computer systems, architectural classification schemes, system attributes to performance, instruction set design and examples, arithmetic logic unit, memory system design, introduction to pipelining, pipeline performance measures, instruction and arithmetic pipelines, pipeline hazards, scheduling pipelines, RISC versus CISC architecture, introduction to interconnection networks, network topologies, interconnection design decisions, multiprocessors versus multicomputer, design and analysis of parallel algorithms, data flow and systolic array architectures. 3 semester hours
ME 670 SIMULATION OF BUSINESS PROCESSES
This course will present methodologies for the efficient simulation of production and business operations. The theory of queuing systems and the simulation of discrete system processes will be developed. Upon completion of this course, students will understand the theoretical basis of discrete system simulation and will be able to use commercial simulation software to analyze and predict traffic and queuing patterns in such systems. 3 semester hours

EE 670 SIMULATION OF BUSINESS PROCESSES
This course will present methodologies for the efficient simulation of production and business operations. The theory of queuing systems and the simulation of discrete system processes will be developed. Upon completion of this course, students will understand the theoretical basis of discrete system simulation and will be able to use commercial simulation software to analyze and predict traffic and queuing patterns in such systems. 3 semester hours

EE 687 E-BUSINESS PLATFORMS
The design of e-commerce systems is discussed from the site design, logistics, accounting, and quality of service points of view. Site layout, customer interface, equipment architecture, and security are addressed. The logistics of supply chain management, manufacturing, distribution, and inventory control systems are discussed. Accounting issues include invoicing, payment systems, and returns; and interface to financial institutions will be detailed. Firewalls for site security, redundancy, speed, and encryption are explained as these pertain to quality of service. 3 semester hours

MECHENICAL ENGINEERING

ME 671 APPLIED STRESS ANALYSIS I
Two- and three-dimensional analysis of the states of stress and strain in continuous solids. Derivation of the field equations and their application to the solution of classical problems; torsion of prismatic bars; analysis of axisymmetrically loaded members; stress concentration; and hertz contact stresses. 3 semester hours

ME 672 APPLIED STRESS ANALYSIS II
Advanced strength of materials solutions of elastic problems. Topics include bending of straight beams; bending of curved beams out of their initial plane; beams on elastic foundations; and bending of plates and shells. Prerequisite: ME 671. 3 semester hours

ME 673 EXPERIMENTAL MECHANICS
Theory and application of electric strain gauge, photoelastic, and brittle lacquer methods of stress analysis for static and dynamic loadings. Laboratory exercises and demonstration are also covered. 3 semester hours

ME 674 VIBRATIONS
Determination and solution of vibration problems involving multidegree of freedom and continuous systems by use of Newton’s Laws, energy methods, and Lagrange’s equations. Topics include the use of matrix methods and consideration of generalized coordinates and normal mode analysis. Prerequisite/ corequisite: ENGR 617 or undergraduate equivalent. 3 semester hours

ME 675 MECHANICAL BEHAVIOR OF MATERIALS
A study of how loading conditions and environmental conditions can influence the behavior of materials in service. Topics include elastic and plastic behavior, fracture, fatigue, low and high temperature behavior; analysis of composite, honeycomb and reinforced materials; and designing with plastics. 3 semester hours

ME 676 ADVANCED MECHANICAL DESIGN
Design of mechanical components and systems common to many engineering applications using modern optimization techniques and related numerical methods. Elements of computer-aided design and reliability in engineering design are studied. 3 semester hours

ME 677 ACOUSTICS & NOISE CONTROL
Wave motion and sound, propagation of sound waves, instrumentation and measurement, sound fields, machinery noise sources and control, and noise control criteria and regulations. 3 semester hours

ME 680 ADVANCED COMPUTATIONAL METHODS
Development and application of computational methods for the solution of engineering problems; finite element and finite difference methods; applications to problems in solid mechanics, structural mechanics, vibrations, fluid mechanics, and heat transfer. 3 semester hours

ME 681 FLUID MECHANICS
The basic equations of fluid mechanics are derived, and a variety of problems of importance in engineering practice are discussed. Topics include pipe and open channel flows, pipe networks, internal flows in pumps and turbines, external flows including low speed aerodynamics and drag reduction. Correct formulation of fluid flow problems for numerical solution, and the choice of effective computational methods for particular applications are stressed. Prerequisites: undergraduate fluid mechanics. 3 semester hours

ME 682 COMPUTATIONAL FLUID MECHANICS & HEAT TRANSFER
Discretization of the equations of heat transport and fluid flow by finite difference and finite element methods. Computational features of various flow regimes, parabolic, elliptic, and hyperbolic equations. Solution of nonlinear equations. Optimization methods. Grid generation problems. Hands-on approach to computational solution of various prototype flow and transport problems. Prerequisites: Undergraduate fluid mechanics and heat transfer. 3 semester hours

ME 683 HEAT TRANSFER
Fundamentals and applications of conduction, convection, and radiation heat transfer. The conservation equations, the heat conduction equation, steady and transient heat conduction in one, two, and three dimensions; formulation of convection problems, thermal boundary layers, similarity solutions, integral method; radiation view factors, view factor algebra, radiative exchange between gray diffuse surfaces. Prerequisites: undergraduate fluid mechanics and heat transfer. 3 semester hours

ME 684 HEAT TRANSFER PROCESSES
Review of conduction, convection, and radiation heat transfer; film coefficients and overall heat transfer coefficient; log-mean temperature difference; design of double-pipe and shell-and-tube heat exchangers; the split-flow exchanger; extended surfaces and the finned-tube heat exchangers; direct-contact heat transfer; furnace calculations. Prerequisite: Undergraduate heat transfer. 3 semester hours

ME 685 AERODYNAMICS
The atmosphere, topics in fluid mechanics, two-dimensional airfoil theory, subsonic and supersonic wing theory, drag, boundary layer control, ground effect machine. Prerequisite: ME 681. 3 semester hours
ME 686 HEATING, VENTILATING & AIR CONDITIONING
Fundamental concepts, A/C systems; psychrometry and its applications; comfort and environmental quality; space heating and cooling loads; pump and piping design; fan and duct design; room air distribution; direct contact heat and mass transfer, and the cooling tower; refrigeration. 3 semester hours

DUAL DEGREE BUSINESS COURSES

BUS 510 APPLIED QUANTITATIVE ANALYSIS
This course is a study of modern mathematical techniques as used in business decision making. Topics include probability distribution, confidence intervals, hypothesis testing, and regression analysis. Prerequisite: None. 3 semester hours

BUS 520 ACCOUNTING AND LEGAL ENVIRONMENT OF BUSINESS
This course is designed for graduate students with little or no prior experience in accounting. The course familiarizes students with the fundamentals of external financial reporting for business enterprises and not-for-profit entities. The financial accounting segment of the course focuses on the preparation, analysis, and reporting of financial statements in accordance with generally accepted accounting principles (GAAP). The conceptual framework that serves as the basis on which financial reporting standards are developed is also discussed. The managerial accounting segment of the course covers such internal reporting issues as break-even analysis, capital budgeting, cost behavior patterns, and cost allocation. The legal component of the course addresses the formation of different types of business entities (e.g., corporation and partnership) and the regulatory role that the SEC, PCAOB, and Sarbanes-Oxley Act of 2002 play in financial reporting. Prerequisite: None. 3 semester hours

BUS 530 PRINCIPLES OF ECONOMICS
Directed toward students with little or no preparation in economics, this course focuses primarily on principles of microeconomic and macroeconomic analysis as applied to management decision making in both the private and public sectors. The microeconomic component of the course is devoted to examining the operations of output (product) and input (resource) markets as they relate to the demand and supply decisions by households, businesses, and trade with other countries. Topics include demand elasticities and revenue strategies, production and cost functions, price-output decision making in different types of market structures, input pricing and usage in various factor markets, and determinants of international trade. The macroeconomic component is based on analyzing the determinants of an economy's levels of output, income, employment, and prices. In addition, the overall economic impacts of government fiscal and monetary policies are studied. Topics include domestic income and product accounts, basic consumption and investment theories, fiscal and monetary policies for economic stabilization, inflation-unemployment tradeoff controversies, federal government budget deficits and debt management issues, and the macroeconomic impact of international trade. Prerequisite: None. 3 semester hours

BUS 550 ORGANIZATION AND BEHAVIOR OF MANAGEMENT
This course provides students with the foundations of management. It covers the functions, roles, and skills of management; basic concepts in organizational behavior and dynamics; and an introduction to strategic management. The theories, models, and issues addressed serve as the building blocks of knowledge that students will need and use in more advanced courses in the core MBA program. Prerequisite: None. 1 semester hour

BUS 560 FINANCE FOUNDATION FOR MANAGERS
The primary objective of this course is to expose students to a broad foundational survey of the finance discipline. This broad exposure is intended to enable participants to improve communication with finance professionals, contribute to financial decisions, and better understand financial statements. The course covers topics in the area of financial institutions, investments, and business finance. It is expected that at the end of the course, students will have received an integrated perspective of how business and individuals are affected by markets and institutions, and how markets and institutions can be used to achieve the goals of individuals and businesses. Prerequisite: None. 3 semester hours

BUS 601 LEADERSHIP
To be competitive in the fast-paced global economy, business organizations must be lean, flexible, globally networked entities with a culturally diverse workforce. This course deals with the fundamental aspects of managing and leading in today's demanding business environment—how to work with and manage people on a one-to-one basis; how to influence group behavior and team effectiveness; how to design high-performing organizations; and how to motivate, lead, and empower people toward a common vision. The course helps students understand the core competencies needed to manage a contemporary organization and enables them to develop into ethical and effective leaders. This course must be taken in the first semester. Prerequisite: BUS 550 or equivalent. 1.5 semester hours

BUS 602 STRATEGIC PLANNING
This course addresses the central challenge facing any business organization—how to generate and preserve a sustainable strategic advantage over competitors. It is a "big picture" course that helps students understand how the total enterprise works. Students learn how the environment impacts the firm and its prospects for success, how resources and capabilities serve as sources of competitive and corporate advantage, how corporate and business strategies create value for the firm, and how such value is captured at the bottom line. This course equips students with the tools for crafting a well-conceived strategy and executing it competently. Students develop skills in industry analysis, in sizing up a company's standing in the marketplace, and evaluating its ability to go head-to-head with the competition. Such skills are critical in a world where competitors are constantly reinventing themselves and their industries, where customers have become more powerful, and where technology is changing the way we do business. This course must be taken in the first semester. Prerequisite: BUS 550 or equivalent. 1.5 semester hours

BUS 611 INFORMATION SYSTEMS
The Information Age has had profound implications on the structure, management, and strategies of modern organizations. This course examines these transformations with particular emphasis on information systems (IS) as an enabler and driver of corporate strategy, electronic business and inter-organizational information systems, business intelligence and knowledge management, and the issues and challenges of managing information technology. This course is only offered in the fall semester and must be taken in sequence with BUS 612. 1.5 semester hours
DATA COLLECTION, MINING, AND ANALYSIS
Data is at the core of effective business decision-making. This course focuses on data collection and consolidation through analysis and modeling with particular emphasis on decision theory and data mining techniques. Ensuring data validity, reliability, security, and privacy are critical to protecting data—a vital organizational asset—and are emphasized. This course is only offered in the fall semester. Prerequisite: BUS 611. 1.5 semester hours

CUSTOMER AND MARKET PERSPECTIVES
This course is designed to give students a solid conceptual understanding of the elements of marketing and marketing planning. Students learn to assess customer opportunities, implement solutions, and manage customer interactions through value creation strategies. Problems and practices in marketing are studied through in-depth reading of current literature and projects. This course is taken in sequence with BUS 630. Prerequisite: Foundation courses. 1.5 semester hours

MANAGING HUMAN CAPITAL
This course focuses on creating an effective organization by improving the competence, coordination, and commitment of its most critical resource—people. The success of any competitive initiative within a company is determined by the capabilities, motivation, and behavior of its employees. Students learn to develop human resource systems that deliver the right mix of skills, knowledge, and motivation needed for organizational success, that enable employees across departments, businesses, and borders to coordinate decisions and actions for maximum performance, and that inspire employees at all levels to achieve the firm’s strategic purpose. Students also acquire skills in organizational diagnosis, work design, performance management, and diversity and change management. This course is taken in sequence with BUS 620. Prerequisite: Foundation courses. 1.5 semester hours

PROCESS MANAGEMENT
This course provides students with knowledge, skills, tools, and techniques to develop and improve processes and systems needed for their organizations to succeed in a highly competitive environment. The course integrates new concepts with material covered in other courses. Topics span all Baldrige criteria, starting with leadership and strategy and ending with improved business results. The course begins with a macro-overview of the markets in which organizations interact. Students learn how to create agile organizations that can rapidly identify customer needs and develop processes that facilitate the products and services demanded by customers.

A key part of this course is understanding and measuring processes so they can be improved to consistently meet customer requirements. To achieve this, process analysis and measurement techniques developed from a variety of disciplines, including quality improvement, management science, and managerial accounting, are discussed and demonstrated. These include process and work redesign, LEAN, TQM/CQI, Six Sigma, ISO9000, Baldrige Award Criteria, PDCA, and activity-based costing. In discussing these subjects, students learn how to apply tools such as control charts, Pareto charts, affinity and fishbone diagrams, and force field analysis.

To obtain an integrative perspective, students analyze the entire value chain. This includes the demand chain where they apply forecasting and marketing concepts to predict the quantity demanded and the shifts in what is demanded. Students also study supply chains to ensure they can deliver what customers want, when they want it, at a competitive price. Enterprise resource planning systems are covered later in the course as an integrating mechanism. Finally, students cover benchmarking as a tool that measures and compares performance, leading to improved results. Prerequisites: BUS 601, 602, 611, 612, 620, and 630. 3 semester hours

MODELING AND FORECASTING
This course examines the fundamentals of effective modeling and statistical forecasting methods, with a major focus on the use of time series data. Through case study analysis, students apply concepts and techniques to actual business situations using real world data such as corporate revenue and monthly product demand. With students placed in the decision-making role, forecasting applications are studied in the areas of financial analysis, marketing, operations planning, and international management. This course is taken in sequence with BUS 660. Prerequisites: BUS 601, 602, 611, 612, 620, and 630. 1.5 semester hours

FINANCIAL ANALYSIS
This course is designed to introduce the students to accounting and finance concepts as they relate to business valuation and mergers and acquisitions. The course focuses on financial reporting and tax issues associated with business combinations and consolidated financial statements. In addition, the course covers the topics of capital structure and cost of capital and applies these concepts to capital budgeting decisions in the context of mergers and acquisitions. Business valuation issues, including approaches to valuing a firm, are an important segment of the course. This course is taken in sequence with BUS 650. Prerequisite: BUS 601, 602, 611, 612, 620, and 630. 1.5 semester hours

MANAGING FOR RESULTS
This capstone course integrates the knowledge and skills acquired throughout the program by applying them to improve organizational results in a variety of scenarios. Students address a series of case-based strategic challenges that include launching a new business venture, leading a turnaround effort, executing an acquisition, entering a new market in an emerging economy, responding to growing competition in a maturing industry, and revitalizing a firm facing rapid technological obsolescence. Students are expected to develop coherent and viable cross-functional solutions that reflect interdisciplinary knowledge and the ability to integrate and apply it appropriately. Prerequisite: All MBA Core. 3 semester hours
The faculty of the School of Engineering consists primarily of full-time professors, all of whom have earned their doctorates and many of whom have significant industrial experience. The faculty is supplemented by several competent adjunct professors from industry. In addition to teaching and research, faculty are active in professional societies as technical editors, as consultants to industry, and in offering continuing education seminars in areas of current technology.

Vicki L. Brown
Chairman of the Department of Civil Engineering and Associate Professor of Civil Engineering
BSCE, Univ. of Pittsburgh; PhD, Univ. of Delaware; PE, Pennsylvania
(structural analysis and design, reinforced concrete structures)

Abbas Fattah
Visiting Associate Professor of Mechanical Engineering
BS, Shiraz Univ.; MS, Isfahan Univ. of Technology; PhD, McGill Univ

Kamran Fouladi
Visiting Assistant Professor of Mechanical Engineering
BS, Florida International Univ.; ME, PhD, Old Dominion Univ.

Piotr Hryniewicz
Senior Lecturer of Engineering
BS, MS, Technical Univ. of Gdansk, Poland; PhD, Univ. of Delaware
(lubricating flows)

Zhongping Huang
Chairman of the Department of Biomedical Engineering and Associate Professor of Mechanical Engineering
BS, MS, Zhejiang Univ.; PhD, Univ. of Kentucky
(fluid-thermal area, artificial kidney/hemodialysis, cryogenics, refrigeration technology)

Raymond P. Jefferis III
Professor of Engineering
BS, MS, PhD, Univ. of Pennsylvania
(systems engineering, software engineering, modeling and control, direct digital control of industrial processes, microprocessors, distributed hierarchical control)

Nazieh Jililati
Visiting Assistant Professor of Civil Engineering
BS, Damascus Univ.; MS, PhD, Gifu Univ., Japan

C. Michael Kelly
Chairman of the Department of Chemical Engineering and Professor of Chemical Engineering
BS, MS, PhD, Michigan State Univ.

JoAnn B. Koskol
Associate Professor of Electrical Engineering
BS, MEE, Rensselaer Polytechnic Institute; PhD, Univ. of Delaware
(signal and image processing)

Ronald L. Mersky
Associate Professor of Civil Engineering
BS, MS, PhD, Univ. of Pennsylvania; PE, Pennsylvania
(environmental engineering, water resources, resources analysis, waste management)

Mark Nicosia
Chairman of the Department of Mechanical Engineering and Professor of Mechanical Engineering
BS, PhD, Penn State Univ.
(biomechanics, computational mechanics)

Gerassimos Orkoulas
Assistant Professor of Chemical Engineering
Diploma with Honors, University of Patras; PhD, Cornell Univ

Sachin Patil
Dean and Associate Professor of Chemical Engineering
BS, Shivaji Univ.; MS, Univ. of Mumbai; PhD, Michigan State Univ.

Sohail Sheikh
Assistant Professor of Chemical Engineering
BSc, Technological Univ., Pakistan; MS, PhD, Syracuse Univ.
(multiprocessor interconnection networks, fault-tolerant computing and optical computing)

Anita Singh
Assistant Professor of Biomedical Engineering
BEng, Lakhdirhi Engineering College; MS, PhD, Wayne State Univ.

Maria Slomiana
Associate Professor of Mechanical Engineering
BS, MS, Warsaw Technical Univ., Poland; MS, Univ. of Pennsylvania; PhD, Drexel Univ.
(solid mechanics, composite materials, theoretical and experimental fracture mechanics)

Xiaomu Song
Associate Professor of Electrical Engineering
BS, MS, Northwestern Polytechnic Univ., Xi’an, China; PhD, Oklahoma State Univ.

Xiaochao Tang
Assistant Professor of Civil Engineering
BEng, Central South Univ.; MS, West Virginia Univ.; PhD, Penn State Univ.

Bin Wang
Associate Professor of Biomedical Engineering
BS, Qiqihar Univ.; MS, Tianjin Univ. of Science and Technology; MS, Univ. of Tennessee Health Science Center; PhD, Temple Univ.
ADJUNCT FACULTY

 Nazhat Aboobaker
 BS, NED Univ., Pakistan; MS, PhD, New Jersey Institute of Technology; PE, New Jersey
 (advanced water and waste-water systems)

 Brett Canimore
 BS, Point Park Univ.; MS, Drexel Univ.; PE, Pennsylvania, New Jersey, New York, Delaware, Maryland, Georgia
 (transportation, highways, bridges)

 Robert N. Cochran
 BS, Westminster College; PhD, Michigan State Univ.
 (catalysis, process development)

 Robin C. Czyzewicz
 BS, MS, Drexel Univ.
 (finite element analyses)

 Constantine G. Fountzoulas
 Dipl. Engr., National Technical Univ., Greece; MS, PhD, Northeastern Univ.
 (fluid mechanics, heat transfer, thermodynamics, material science and engineering)

 Chad Freed
 BS, MS, Drexel Univ.; PhD, Univ. of Pennsylvania
 (geotechnical engineering)

 Ronald C. Kerins Jr.
 BS, Temple Univ.; MBA, Penn State Univ.
 (engineering management)

 James R. May
 BS, JD, Univ. of Kansas; LLM, Pace Univ.
 (environmental law, law of hazardous waste and substances)

 Murali Rao
 BA, Univ. of Pennsylvania; MSEE, Drexel Univ.
 (microwave electronics)

 Ross P. Ulmer
 BS, Widener Univ.; MS, Drexel Univ.; PE, Pennsylvania, New Jersey, Delaware
 (land development design, computer applications of site/civil design)

 Joseph J. Viscuso
 BS, Widener Univ.; MS, Villanova Univ.; PE, Pennsylvania, Delaware, New York, New Jersey, Maryland, Ohio, Massachusetts, West Virginia, Tennessee
 (municipal/public works and civil site design)

 ENGINEERING BOARD OF ADVISORS

 Peter B. Zacharkiw ’72, ’77, Chairman
 President, Mardel Investments, Inc.

 Edward W. Callan ’80
 Vice President, Outage Planning and Services, Exelon

 Rochelle Cameron
 CEO, Philadelphia International Airport

 J. Earl Coffman ’90
 Director of Engineering, PECO Energy Company

 Paul T. Davison ’86
 Vice President of Operations Support, PSEG Nuclear, LLC

 William Fryberger ’73
 President, Engineering Equipment Sales, Inc.

 John Horne
 President, Independence Prosthetics and Orthotics, Inc.

 Joseph Houldin
 CEO, DVIRC

 Roby Lentz ’92
 Vice President, Director of Business Development, Delphinus Engineering

 Karl McClellan ’80, ’88
 Reliability & Plant Support Services Team Leader, Kimberly-Clark

 Samir Mehta ’93
 COO, Conviva

 Charles A. Mouzannar, PE
 Executive Vice President, Earth & Environmental, AMEC

 Joseph J. Viscuso ’73
 Vice President, Stantec

 Jeff Warmann
 CEO and President, Monroe Energy, LLC